An accelerated exhaustive enumeration algorithm in the Ising model |
Padalko M.A., Andriushchenko P.D., Soldatov K.S., Nefedev K.V. |
2019, issue 2, P. 235–244 |
Abstract |
An accelerated algorithm for the precise calculation of the lattice Ising model is presented. The algorithm makes it possible to calculate two-dimensional 8$\times$8 lattices for periodic boundary conditions on ordinary personal computers. In turn, the exact solution obtained by the proposed method makes it possible to check the effectiveness of various probabilistic approaches, in particular the Monte Carlo methods. The algorithm is applicable to various types of lattices. |
Keywords: Izing model, complete enumeration, Monte-Carlo method |
Download the article (PDF-file) |
References |
[1] J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932. [2] L.D. Landau, E.M. Lifshits, Teoreticheskaia fizika V 10 t. T. 5 (V 2 ch. Ch.1) Statisticheskaia fizika, Fizmatlit, M., 2013. [3] R.D. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985. [4] N.A. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E.H. Teller, “Equation of state calculation by fast computing machines”, J. Chem. Phys., 21:6, (1953), 1087–1092. [5] R.H. Swendsen, J.S. Wang, M.N. Rosenbluth, A.H. Teller, E.H. Teller, “Nonuniversal critical dynamics in Monte-Carlo simulations”, Phys. Rev. Lett., 58:2, (1987), 86–88. [6] U. Wolff, “Collective Monte-Carlo Updating fir Spin Systems”, Phys. Rev. Lett., 2:4, (1989), 361–364. [7] F. Wang, D.P. Landau, “Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States.”, Phys. Rev. Lett., 86:10, (2001), 2050–2053. [8] M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics, Claredon Press, Oxford, 2001. [9] D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, 4th ed., Cambridge University Press, Cambridge, 2015. [10] L.Yu. Barash, M.A. Fadeeva, L. N. Shchur, “Control of accuracy in the Wang-Landau algorithm”, Phys. Rev. Lett., E 96, 043307, (2017), 2050–2053. |