Problem of partial identification of unknown medium |
Nazarov V.G. |
2019, issue 1, P. 43-62 |
Abstract |
One consider the optimal control problem for stationary equations of acoustic waves diffraction on three-dimensional inclusion in unbounded homogeneous medium. The problem is to minimize $L^2$-deviation of pressure field in inclusion from the given. The control is the field source in the exterior medium. |
Keywords: radiography of a continuous medium, identification the chemical composition of a substance, singular value decomposition, calculation accuracy |
Download the article (PDF-file) |
References |
[1] Sergei Osipov, Sergei Chakhlov, Andrey Batranin, Oleg Osipov, Van Bak Trinh, Juriy Kytmanov, “Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography”, NDT and E International, 98, (2018), 63–69. [2] S.P. Osipov, V.A. Udod, Yanzhao Wang, “Identification of Materials in X-Ray Inspections of Objects by the Dual-Energy Method”, Russian Journal of Nondestructive Testing, 53:8, (2017), 568–587. [3] V.A. Klimenov, S.P. Osipov, A.K. Temnik, “Identifikatsiia veshchestva ob"ekta kontrolia metodom dual'nykh energii”, Defektoskopiia, 11, (2013), 40–50. [4] J.H. Hubbell, S.M. Seltzer, Tables of X – Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint NISTIR-5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995. [5] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, “XCOM: Photon Cross Section Database. National Institute of Standards and Technology. Gaithersburg. MD.”, 2005, http://www.physics.nist.gov/xcom. [6] D.S. Anikonov, A.E. Kovtaniuk, I.V. Prokhorov, Ispol'zovanie uravneniia perenosa v tomografii, Logos, M., 2000. [7] D.S. Anikonov, A.E. Kovtanyuk, I.V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht-Boston, 2002. [8] V.G. Nazarov, “O povyshenii tochnosti vychislenii v zadache nakhozhdeniia khimicheskogo sostava sredy”, Dal'nevostochnyi matematicheskii zhurnal, 18:2, (2018), 219–232. [9] V.G. Nazarov, “Metod singuliarnogo razlozheniia matritsy v zadache nakhozhdeniia khimicheskogo sostava sredy”, Sibirskie elektronnye matematicheskie izvestiia, 14, (2017), 821–837. [10] V.G. Nazarov, “Vybor optimal'nykh znachenii energii izlucheniia v zadache nakhozhdeniia khimicheskogo sostava sredy”, Matematicheskoe modelirovanie, 30, (2018), 91–102. [11] S.K. Godunov, A.G. Antonov, O.P. Kiriliuk, V.I. Kostin, Garantirovannaia tochnost' resheniia sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka. Sib. otd-nie, Novosibirsk, 1988. [12] Dzh. Forsait, M. Mal'kol'm, K. Mouler, Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980. [13] D.S. Anikonov, “Integro-differential heterogeneity indicator in tomography problem”, J.Inv.Ill-Posed Problems, 7:1, (1999), 17–59. [14] A.I. Volkov, I.V. Zharskii, Bol'shoi khimicheskii spravochnik, Sovremennaia shkola, Minsk, 2005. |