Circular symmetrization and Green function |
Dubinin V.N. |
2019, issue 1, P. 24-30 |
Abstract |
We study the behaviour of the Green function under the circular symmetrization of a domain on the Riemann surface. |
Keywords: circular symmetrization, Green function, Green energy of a discrete charge |
Download the article (PDF-file) |
References |
[1] J. Krzyz, “Circular symmetrization and Green’s function”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 7, (1959), 327–330. [2] A. Baernstein, “Integral means, univalent functions and circular symmetrization”, Acta math., 133:3-4, (1974), 139–169. [3] A. Baernstein, B. A. Taylor, “Spherical rearrangements, subharmonic functions, and *-functions in n-space”, Duke Math. J., 43, (1976), 245–268. [4] M. Essen, D. Shea, “On some questions of uniqueness in the theory of symmetrization”, Ann. Acad. Sci. Rain. Ser. A I Math., 4, (1978/1979), 311–340. [5] A. Weitsman, “Symmetrization and the Poincari metric”, Ann. of Math., 124:2, (1986), 159–169. [6] A. Fryntov, “Extremal properties of Green functions and A. Weitsman’s conjecture”, Trans. Amer. Math. Soc., 345:2, (1994), 511–525. [7] A.Iu. Solynin, “Poliarizatsiia i funktsional'nye neravenstva”, Algebra i analiz, 8:6, (1996), 148–185. [8] V.N. Dubinin, “Simmetrizatsiia, funktsiia Grina i konformnye otobrazheniia”, Zap. nauchn. sem. POMI, 226, (1996), 80–92. [9] V.N. Dubinin, “Novaia versiia krugovoi simmetrizatsii s prilozheniiami k p-listnym funktsiiam”, Matem. sb., 203:7, (2012), 79-94. [10] V. N. Dubinin, “Krugovaia simmetrizatsiia kondensatorov na rimanovykh poverkhnostiakh”, Matem. sb., 206:1, (2015), 69–96. [11] V. N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Variables and Elliptic Equations, 59:1, (2014), 59–66. [12] V. N. Dubinin, V. Y. Kim, “Covering theorem for p-valent functions with Montel’s normalization”, Journal of Mathematical Analysis and Applications, 428:1, (2015), 502–507. [13] V. N. Dubinin, “O logarifmicheskoi energii nulei i poliusov ratsional'noi funktsii”, Sib. matem. zhurn., 57:6, (2016), 1255–1261. [14] V. N. Dubinin, “Poias lemniskat i teoremy iskazheniia dlia mnogolistnykh funktsii. II”, Matem. zametki, 104:5, (2018), 700–707. [15] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966. [16] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel: Birkhauser, 2014, xii+344 pp. |