About influence of boundary on the chaotic advection in barotropic quasi-geostrophic models |
V. F. Kozlov, K. V. Koshel', D. V. Stepanov |
2001, issue 2, P. 89–98 |
Abstract |
Barotropic inviscid model of chaotic advection in unidirectional pulsating background flow over a seamount of ? form located near to rectilinear Boundary is considered. Estimation of breadth of a boundary layer between an exterior flowing current and rotational area, in which there is an interchanging of passive impurity particles, between indicated areas are obtained. It is shown, that influences of boundary leads to breadth of that layer is increased in case of a determination of a hyperbolic point on to boundary. |
Keywords: |
Download the article (PDF-file) |
References |
[1] V. F. Kozlov, A. Yu. Gurulev, “O peremeshhenii vixrej vdol' glubokovodnyx zhelobov”, Meteorologiya i Gidrologiya, 1994, № 6, 70–78. [2] V. F. Kozlov, “Fonovye techeniya v geofizicheskoj gidrodinamike”, Izv. RAN. FAO, 31:2 (1995), 245–250. [3] H. Aref, “Chaotic advection of fluid particles”, Phil. Trans. Roy. Soc., 333:1631 (1990), 73–288, London. [4] V. F. Kozlov, K. V. Koshel', “Barotropnaya model' xaoticheskoj advekcii v fonovyx techeniyax”, Izv. RAN. FAO, 35:1 (1999), 137–144. [5] V. F. Kozlov, K. V. Koshel', “Ob odnoj modeli xaoticheskogo perenosa v barotropnom fonovom techenii”, Izv. RAN. FAO, 36:1 (2000), 119–128. [6] V. F. Kozlov, K. V. Koshel', “Nekotorye osobennosti xaotizacii pul'siruyushhego barotropnogo potoka nad osesimmetrichnoj podvodnoj vozvyshennost'yu”, Izv. RAN. FAO, 37:3 (2001), 1–12. [7] A. E. Gledzer, “Zaxvat i vysvobozhdenie massy v vixrevyx strukturax okeana”, Izv. RAN. FAO, 35:6 (1999), 838–845. [8] M. A. Sokolovskiy, V. N. Zyryanov, P. A. Davies, “On the influence of an isolated submerged obstacle on a barotropic tidal flow”, Geophys. Astrophys. Fluid Dyn., 88:1 (1998), 1–30. [9] J. M. Ottino, The kinematic of mixing: stretching, chaos and transport, Reprinted 1997, Cambridge University Press, NY, 1989, 364 pp. |