On the Mumford problem |
B. T. Tashpulatov |
2001, issue 2, P. 74–80 |
Abstract |
The concrete class of the cusp forms is given for which any casp form is the polynomial in theta-functions. |
Keywords: |
Download the article (PDF-file) |
References |
[1] D. Mamford, Lekcii o te'ta-funkciyax, Mir, M., 1998, 448 s. [2] O. M. Fomenko, Prilozhenie teorii modulyarnyx form k teorii chisel, Itogi nauki i texniki. Algebra. Topologiya. Geometriya, 15, M., 1977, 90 s. [3] E. Hecke, Analytishe Arithmetik der Positiven quadratischen formen, Kobenhaven, 1940. [4] R. A. Rankin, “Sums of squares and cusp forms”, Amer. Journal Math., 87:4 (1965), 857–860. [5] L. A. Kogan, B. T. Tashpulatov, A. D. Dusumbetov, Predstavlenie chisel kvadratichnymi formami, Fan, Tashkent, 1989, 132 s. [6] A. Z. Val'fish, “O predstavlenii chisel summami kvadratov. Asimptoticheskie formuly”, Uspexi matematicheskix nauk, 7 (1952), 97–178. [7] R. I. Beridze, “O summirovanii singulyarnogo ryada Xardi-Littlvuda”, Soobshh. AN Gruz. SSR, 38 (1965), 529–534. [8] A. V. Malyshev, “O predstavlenii celyx chisel polozhitel'nymi kvadratichnymi formami”, Trudy Matem. inst. im. V. A. Steklova AN SSSR, 65, 1962, 1–212. |