Far Eastern Mathematical Journal

To content of the issue


On the Mumford problem


B. T. Tashpulatov

2001, issue 2, P. 74–80


Abstract
The concrete class of the cusp forms is given for which any casp form is the polynomial in theta-functions.

Keywords:

Download the article (PDF-file)

References

[1] D. Mamford, Lekcii o te'ta-funkciyax, Mir, M., 1998, 448 s.
[2] O. M. Fomenko, Prilozhenie teorii modulyarnyx form k teorii chisel, Itogi nauki i texniki. Algebra. Topologiya. Geometriya, 15, M., 1977, 90 s.
[3] E. Hecke, Analytishe Arithmetik der Positiven quadratischen formen, Kobenhaven, 1940.
[4] R. A. Rankin, “Sums of squares and cusp forms”, Amer. Journal Math., 87:4 (1965), 857–860.
[5] L. A. Kogan, B. T. Tashpulatov, A. D. Dusumbetov, Predstavlenie chisel kvadratichnymi formami, Fan, Tashkent, 1989, 132 s.
[6] A. Z. Val'fish, “O predstavlenii chisel summami kvadratov. Asimptoticheskie formuly”, Uspexi matematicheskix nauk, 7 (1952), 97–178.
[7] R. I. Beridze, “O summirovanii singulyarnogo ryada Xardi-Littlvuda”, Soobshh. AN Gruz. SSR, 38 (1965), 529–534.
[8] A. V. Malyshev, “O predstavlenii celyx chisel polozhitel'nymi kvadratichnymi formami”, Trudy Matem. inst. im. V. A. Steklova AN SSSR, 65, 1962, 1–212.

To content of the issue