Far Eastern Mathematical Journal

To content of the issue


Some properties of the resolvent kernels for integral equations with bi-Carleman kernels


Igor M. Novitskii

2016, issue 2, P. 186-208


Abstract
We prove that, at regular values lying in a region of generalized strong convergence, the resolvent kernels corresponding to a continuous bi-Carleman kernel vanishing at infinity can be expressed as uniform limits of sequences of resolvent kernels associated with its approximating Hilbert-Schmidt-type subkernels.

Keywords:
linear integral equation of the second kind, bounded integral linear operator, Fredholm resolvent, resolvent kernel, bi-Carleman kernel, Hilbert-Schmidt kernel, nuclear operator, regular value, characteristic set

Download the article (PDF-file)

References

[1] V.B. Korotkov, “On the nonintegrability property of the Fredholm resolvent of some integral operators”, Sibirsk. Mat. Zh., 39 (1998), 905–907 (in Russian); English transl.: Siberian Math. J., 39 (1998), 781-783.
[2] V.B. Korotkov, Introduction to the algebraic theory of integral operators, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, 2000, ISBN: 5-1442-0827-5 (in Russian), 79 pp.
[3] V.B. Korotkov, “Some unsolved problems of the theory of integral operators”, Sobolev spaces and related problems of analysis, Trudy Inst. Mat.. V. 31, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1996, 187–196 (in Russian); English transl.: Siberian Adv. Math., 7 (1997), 5-17.
[4] T. Carleman, Sur lesequations integrales singulieres a noyau reel et symetrique, A.-B. Lundequistska Bokhandeln, Uppsala, 1923.
[5] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actual. scient. et industr., 229, Hermann, Paris, 1935 (in German).
[6] W.J. Trjitzinsky, “Singular integral equations with complex valued kernels”, Ann. Mat. Pura Appl., 4:25 (1946), 197–254.
[7] N. I. Akhiezer, “Integral operators with Carleman kernels”, Uspekhi Mat. Nauk., 2:5 (1947), 93–132 (in Russian).
[8] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, Nauka, Moscow, 1966 (in Russian); English transl. from the 3rd Russian ed.: Monographs and Studies in Mathematics, 9, 10, Pitman Advanced Publishing Program, Boston, 1981.
[9] C.G. Costley, “On singular normal linear equations”, Can. Math. Bull., 13 (1970), 199–203.
[10] J. W. Williams, “Linear integral equations with singular normal kernels of class I”, J. Math. Anal. Appl., 68:2 (1979), 567–579.
[11] V.B. Korotkov, Integral operators, Nauka, Novosibirsk, 1983 (in Russian).
[12] T. Kato, Perturbation theory for linear operators, Corr. print. of the 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[13] E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, New York, 1948.
[14] L.V. Kantorovich, G.P. Akilov, Functional analysis, 3rd ed., Nauka, Moscow, 1984 (in Russian); English transl.: Pergamon Press, Oxford-Elmsford-New York, 1982.
[15] P. Halmos, V. Sunder, Bounded integral operators on L2 spaces, Springer, Berlin, 1978.
[16] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, rev. ed., Academic Press, San Diego, 1980.
[17] B. Misra, D. Speiser, G. Targonski, “Integral operators in the theory of scattering”, Helv. Phys. Acta, 36 (1963), 963–980.
[18] A. C. Zaanen, “An extension of Mercer’s theorem on continuous kernels of positive type”, Simon Stevin, 29 (1952), 113–124.
[19] J. Buescu, “Positive integral operators in unbounded domains”, J. Math. Anal. Appl., 296:1 (2004), 244–255.
[20] I.M. Novitskii, “Unitary equivalence between linear operators and integral operators with smooth kernels”, Differentsial’nye Uravneniya, 28:9 (1992), 1608–1616 (in Russian); English transl.: Differential Equations, 28:9 (1992), 1329-1337.
[21] I.M. Novitskii, “Reduction of linear operators in L2 to integral form with smooth kernels”, Dokl. Akad. Nauk SSSR, 318:5 (1991), 1088–1091 (in Russian); English transl.: Soviet Math. Dokl., 43:3 (1991), 874-877.
[22] I.M. Novitskii, “Integral representations of linear operators by smooth Carleman kernels of Mercer type”, Proc. Lond. Math. Soc. (3), 68:1 (1994), 161–177.
[23] T. Carleman, “Zur Theorie der linearen Integralgleichungen”, Math. Z., 9 (1921), 196–217.
[24] S.G. Mikhlin, “On the convergence of Fredholm series”, Doklady AN SSSR, XLII:9 (1944), 374–377 (in Russian).
[25] F. Smithies, “The Fredholm theory of integral equations”, Duke Math. J., 8 (1941), 107–130.

To content of the issue