Far Eastern Mathematical Journal

To content of the issue


On covariant form of the momentum balance equation for perfect fluid


Gudimenko A. I., Guzev M. A.

2015, issue 1, P. 41-52


Abstract
The apparatus of differential geometry is used to represent the momentum balance equation for perfect fluid in а form that is invariant under the time-dependent coordinate transformations. The motion of fluid is described in the framework of four-dimensional formalism when the space-time is represented as a bundle over the time axis $\mathbb R$. Applications of the obtained formulation are discussed.

Keywords:
continuum mechanics, momentum conservation law, fiberbundles, covariant formulation

Download the article (PDF-file)

References

[1] C. Truesdell, W. Noll, The non-linear eld theories of mechanics, Springer-Verlag, Berlin, Heidelberg, New York, 2004, 603 pp.
[2] W. Noll, Five contributions to natural philosophy, 2004, http://www.math.cmu.edu/wn0g/noll.
[3] C. Truesdell, R. Toupin, ""The classical eld theories"", In: Encyclopedia of Physics, ed. S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960.
[4] J. E. Marsden, T. J. R. Hughes, Mathematical foundations of elasticity, Dover, New York, 1983.
[5] G. Romano, R. Barretta, Continuum mechanics on manifolds, University of Naples Federico II, Naples, Italy, 2014, http://wpage.unina.it/romano.
[6] G. Romano, R. Barretta and M. Diaco, ""Geometric continuum mechanics"", Meccanica, 49:1, (2014), 111-133.
[7] A. I. Gudimenko, M. A. Guzev, “Ob invariantnoj forme zapisi zakona sohranenija massy”, Dal'nevost. matem. zhurn., 14:1 (2014), 33–40.
[8] A. I. Gudimenko, M. A. Guzev, “Geometricheskie aspekty izuchenija zakona sohranenijamassy”, Dal'nevost. matem. zhurn., 14:2 (2014), 173–190.
[9] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989.
[10] G. A. Sardanashvili, Sovremennye metody teorii polja. 2. Geometrija i klassicheskaja mehanika, URSS, Moskva, 1998.
[11] L. Mangiarotti and G. Sardanashvily, Connections in classical and quantum field theory,World Scientific, Singapore, NewJersey, London, Hong Kong, 2000.
[12] G. Lamb, Gidrodinamika, Gostehizdat, Moskva, 1947.
[13] V. I. Arnol'd, V. V. Kozlov, A. I. Nejshtadt, Matematicheskie aspekty klassicheskoj i nebesnoj mehaniki, Sovremennye problemy matematiki. Fundamental'nye naprvlenija. T. 3, VINITI, Moskva, 1985.
[14] B. Schutz, Geometrical methods of mathematical physics, Cambridge Univ. Press, Cambridge, 1980.
[15] F. I. Dolzhanskij, Lekcii po geofizicheskoj gidrodinamiki, IBM RAN, Moskva, 2006.
[16] L. D. Landau, E. M. Lifshic, Teoreticheskaja fizika. T. VI. Gidrodinamika, Fizmatlit, Moskva, 2001.
[17] B. A. Dubrovin, S. P. Novikov, A.T. Fomenko, Sovremennaja geometrija. Metody i prilozhenija, Nauka. Gl. red. fiz.-mat. lit., Moskva, 1986.
[18] L. G. Lojcjanskij, Mehanika zhidkosti i gaza: Ucheb. dlja vuzov., Drofa, Moskva, 2003.
[19] D. V. Sivuhin, Obshhij kurs fiziki. T. I. Mehanika, Fizmatlit. Izd-vo MFTI, Moskva, 2005.
[20] S. K. Godunov, E. I. Romenskij, Jelementy mehaniki sploshnyh sred i zakony sohranenija, Nauchnaja kniga, Novosibirsk, 1998.
[21] F. Uorner, Osnovy teorii gladkih mnogoobrazij i grupp Li, Mir, Moskva, 1987.
[22] I. Kol ar and P. Michor and J. Slovak, Natural operations in differential geometry,Springer-Verlag, Berlin, Heidelberg, New York, 1993.

To content of the issue