Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value |
N. Budarina, V. Bernik, F. G?otze |
2015, issue 1, P. 21-37 |
Abstract |
In this paper we obtain the effective estimates in the terms of n and Q for the measure of the sets of real numbers with the given approximation property by algebraic numbers of degree n and height bounded by $Q\in\mathbb N$. |
Keywords: integer polynomials, Lebesgue measure, approximation by algebraic numbers |
Download the article (PDF-file) |
References |
[1] A. J. Khintchine, "Zwei Bemerkungen zu einer Arbeit des Herrn Perron", Math. Z., 22:1 (1925), 274-284. [2] V. V. Beresnevich, "On approximation of real numbers by real algebraic numbers", Acta Arith., 90:2 (1999), 97-112. [3] V. I. Bernik, "On the exact order of approximation of zero by values of integral polynomials", Acta Arith., 53 (1989), 17-28. [4] A. J. Khintchine, "Zur metrischen Theorie der diophantischen Approximationen", Math. Z., 24:1 (1926), 706-714.[5] K. Mahler, "Uber das Mass der Menge aller S-Zahlen", Math. Ann., 106 (1932), 131-139. [6] V. G. Sprindzuk, Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967. [7] V. V. Beresnevich, "A Groshev type theorem for convergence on manifolds", Acta Math. Hungar., 94:1-2 (2002), 99-130. [8] V. I. Bernik, D. Kleinbock, G. A. Margulis, "Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions", Internat. Math. Res. Notices, 2001, №9, 453-486. [9] V. I. Bernik, N. Budarina, D. Dickinson, "A divergent Khintchine theorem in the real, complex, and p-adic elds", Lith. Math. J., 48:2 (2008), 158-173. [10] V. I. Bernik, N. Budarina, D. Dickinson, "Simultaneous Diophantine approximation in the real, complex and p-adic elds", Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193-216. [11] Y. Bugeaud, "Approximation by algebraic integers and Hausdorff dimension", J. Lond. Math. Soc., 65 (2002), 547-559. [12] V. V. Beresnevich, V. I. Bernik, F. Goetze, "The distribution of close conjugate algebraic numbers", Compositio Math., 146 (2010), 1165-1179. [13] N. Budarina, D. Dickinson, "Simultaneous Diophantine Approximation in two metrics and the distance between conjugate algebraic numbers in C Qp", Indagationes Mathematicae, 23 (2012), 32-41. [14] N. Budarina, D. Dickinson, Jin Yuan, "On the number of polynomials with small discriminants in the euclidean and p-adic metrics", Acta Mathematica Sinica, 28:3 (2012), 469-476. [15] N. Budarina, F. Goetze, "Distance between conjugate algebraic numbers in clusters", Mathematical Notes, 94:5 (2013), 816-819. [16] V. V. Beresnevich, V. I. Bernik, F. Goetze, "Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants", Dokl. Nats. Akad.Nauk Belarusi, 54:2 (2010), 26-28. [17] V. V. Beresnevich, V. I. Bernik, F. Goetze, "On the distribution of the values of theresultants of integral polynomials", Dokl. Nats. Akad. Nauk Belarusi, 54:5 (2010), 21-23. [18] G. V. Chudnovsky, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984. [19] P. L. Cijsouw, Transcendental numbers, North-Holland, Amsterdam, 1972. [20] V. I. Bernik, "The metric theorem on the simultaneous approximation of zero by values of integral polynomials", Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 24-45. [21] V. I. Bernik, "Application of the Hausdorff dimension in the theory of Diophantine approximations", Acta Arith., 42:3 (1983), 219-253. [22] A. O. Gelfond, Transcendental and algebraic numbers, Gosudartsv. Izdat. Tehn.-Teor. Lit., Moscow, 1952. |