Computer implementation of Lagrangian formulation of Hencky’s isotropic hyperelastic material constitutive relations |
Korobeynikov S. N., Oleinikov A. A., Babichev A. V., Larichkin A.Yu., Alyokhin V. V. |
2013, issue 2, P. 222-249 |
Abstract |
Lagrangian formulation of Hencky’s isotropic hyperelastic material constitutive relations is implemented into MSC.Marc code. Reliability of implementation proves to be true due to the comparison of numerical solutions obtained with the use of MSC.Marc code with exact solutions of three-dimensional problems on simple shear and on uniaxial extension of a rod with Hencky’s isotropic hyperelastic material model. New solutions of a problem on origin of a neck and postcritical deformation of the rod are obtained at its extension by the prescribed displacement of the edge face. |
Keywords: isotropic hyperelasticity, Hencky’s material, finite element method, MSC.Marc code |
Download the article (PDF-file) |
References |
[1] L. Anand, “On Hencky’s approximate strain-energy function for moderate deformations”, Trans. ASME, J. Appl. Mech., 46:1 (1979), 78–82. [2] L. Anand, “Moderate deformations in extension-torsion of incompressible isotropic elastic materials”, J. Mech. Phys. Solids., 34 (1986), 293–304. [3] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, N.J., 1996. [4] J. Bonet, R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, Cambridge, 1997. [5] R. Brown, Physical Testing of Rubber (4th ed.), Springer, N.Y., 2006. [6] A. Curnier, L. Rakotomanana, “Generalized strain and stress measures: critical survey and new results”, Eng. Trans., 39:3–4 (1991), 461–538. [7] A. Curnier, Computational Methods in Solid Mechanics, Kluwer Academic Publ., Dordrecht, 1994. [8] H. Darijani, R. Naghdabadi, “Hyperelastic materials behavior modeling using consistent strain energy density functions”, Acta Mech., 213 (2010), 235–254. [9] H. Darijani, R. Naghdabadi, “Constitutive modeling of solids at finite deformation using a second-order stress-strain relation”, Int. J. Engng Sci., 48 (2010), 223–236. [10] R. Hill, “On uniqueness and stability in the theory of finite elastic strain”, J. Mech. Phys. Solids., 5:4 (1957), 229–241. [11] R. Hill, “A general theory of uniqueness and stability in elastic-plastic solids”, J. Mech.Phys. Solids., 6:3 (1958), 236–249. [12] R. Hill, “Some basic principles in the mechanics of solids without a natural time”, J. Mech. Phys. Solids., 7:3 (1959), 209–225. [13] R. Hill, “On constitutive inequalities for simple materials — I”, J. Mech. Phys. Solids., 16:4 (1968), 229–242. [14] R. Hill, “Aspects of invariance in solid mechanics”, Advances in Applied Mechanics, 18, Academic Press, New York, 1978, 1–75. [15] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Egineering, Wiley, Chichester et al., 2000. [16] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, 1987. [17] M. Kleiber, Incremental Finite Element Modelling in Non-linear Solid Mechanics, Ellis Horwood, Chichester, 1989. [18] S. N. Korobeinikov, “Primenenie metoda konechnykh elementov k resheniiu nelineinykh zadach po deformirovaniiu i potere ustoichivosti atomnykh reshetok”, Preprint RAN. Sib. otd-nie. Institut gidrodinamiki; № 1-97, Novosibirsk, 1997. [19] S. N. Korobeinikov, Nelineinoe deformirovanie tverdykh tel, Iz-vo SO RAN, Novosibirsk, 2000. [20] S. N. Korobeinikov, “Strogo sopriazhennye tenzory napriazhenii i deformatsii”, PMTF, 41:3 (2000), 149–154. [21] S. N. Korobeinikov, “Chislennoe reshenie uravnenii s osobennostiami deformirovaniia uprugoplasticheskikh obolochek vrashcheniia”, Vychislitel'nye tekhnologii, 6:5 (2001), 39–59. [22] S. N. Korobeinikov, “The numerical solution of nonlinear problems on deformation and buckling of atomic lattices”, Int. J. Fracture, 128 (2004), 315–323. [23] S. N. Korobeynikov, “Objective tensor rates and applications in formulation of hyperelastic relations”, J. Elast., 93 (2008), 105–140. [24] S. N. Korobeynikov, “Families of continuous spin tensors and applications in continuum mechanics”, Acta Mech., 216:1-4 (2011), 301–332. [25] S. N. Korobeinikov, A. A. Oleinikov, “Lagranzheva formulirovka opredeliaiushchikh sootnoshenii giperuprugogo materiala Genki”, Dal'nevostochnyi matematicheskii zhurnal, 11:2 (2011), 155–180. [26] MARC Users Guide. V. A: Theory and Users Information, MSC. Software Corporation, Santa Ana (CA), 2010. [27] MARC Users Guide. V. B: Element Library, MSC. Software Corporation, Santa Ana (CA), 2010. [28] MARC Users Guide. V. D: User Subroutines and Special Routines, MSC. Software Corporation, Santa Ana (CA), 2010. [29] R. W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chichester, 1984. [30] J. Plesek, A. Kruisova, “Formulation, validation and numerical procedures for Hencky’s elasticity model”, Computers and Structures, 84 (2006), 1141–1150. [31] V. I. Shalashilin, E. B. Kuznetsov, Metod prodolzheniia resheniia po parametru i nailuchshaia parametrizatsiia, URSS, M., 1999. [32] G. Streng, Dzh. Fiks, Teoriia metoda konechnykh elementov, Mir, M., 1977. [33] J. M. T. Thompson, “Bifurcational instability of an atomic lattice”, Instabilities and Catastrophes in Science and Engineering, Ed. by J.M.T. Thompson, Wiley: Chichester et al., 1982, 101–124. [34] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics. V. III/3: Handbuch der Physik, ed. S. FlEugge, Springer, New York, 1965. [35] V. Tvergaard, A. Needleman, “On the development of localized buckling patterns”,Collapse: the Buckling of Structures in Theory and Practice: Proc. Int. Symp., Eds: J.M.T. Thompson, G.W. Hunt, Cambridge: Cambridge Univ. Press, 1983, 11–24. [36] K. Vasidzu, Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987. [37] H. Xiao, O. T. Bruhns, A. Meyers, “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124 (1997), 89–105. [38] H. Xiao, O. T. Bruhns, A. Meyers, “Hypo-elasticity model based upon the logarithmic stress rate”, J. Elast., 47 (1997), 51–68. [39] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method (4th ed.), Butterworth-Heinemann, Oxford, 2000. |