On certain Littlewood-like and Schmidt-like problems in inhomogeneous Diophantine approximations |
N. G. Moshchevitin |
2012, issue 2, P. 237–254 |
Abstract |
We give several results related to inhomogeneous approximations to two real numbers and badly approximable numbers. Our results are related to classical theorems by A. Khintchine [7] and to an original method invented by Y. Peres and W. Schlag [13]. |
Keywords: Diophantine approximation, Littlewood conjecture, Peres – Schlag's method, badly approximable numbers |
Download the article (PDF-file) |
References |
[1] D. Badziahin, A. Pollington, S. Velani, “On a problem in simultaneous Diophantine approximation: Schmidt's conjecture”, Annals of Mathematics, 174 (2011), 1837–1883. [2] D. Badziahin, On multiplicatively badly approximable numbers, 2011, arXiv: 1101.1855. [3] Y. Bugeaud, “Multiplicative Diophantine approximation”, Dynamical systems and Diophantine Approximation, Socie?te? mathe?matique de France, Se?minaires et Congre?s 19, 2009, 107–127. [4] Y. Bugeaud, N. Moshchevitin, “Badly approximable numbers and Littlewood-type problems”, Mathematical Proceedings of the Cambridge Philosophical Society, 150:02 (2011), 215–226. [5] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts Math. Math. Phys., v. 45, Cambridge Univ. Press, New York, 1957. [6] H. J. Godwin, “On the theorem of Khintchine”, Proc. London Math. Soc, 3, 1:1 (1953), 211–221. [7] A. Khintchine, “U?ber eine Klasse linearer diophantischer Approximationen”, Rendiconti Circ. Math. Palermo, 50:2 (1926), 170–195. [8] E. Lindenstrauss, U. Shapira, Homogeneous orbit closures and applications, 2011, arXiv: 1101.3945. [9] N. Moshchevitin, “Khintchine's Diophantine singular systems and their applications”, Russian Math. Surveys, 65:3 (2010), 433–511. [10] N. Moshchevitin, “On simultaneously badly approximable numbers”, Bull. London Math. Soc., 42:1 (2010), 149–154. [11] N. Moshchevitin, “A note on badly approximable affine forms and winning sets”, Moscow Mathematical Journal, 11:1 (2011), 129–137. [12] N. G. Moshchevitin, Schmidt's conjecture and Badziahin – Pollington – Velani's theorem, 2010, arXiv: 1004.4269. [13] Y. Peres, W. Schlag, “Two Erdo?s problems on lacunary sequences: chromatic numbers and Diophantine approximations”, Bull. London Math. Soc., 42:2 (2010), 295–300. [14] A. M. Rockett, P. Szu?sz, Continued Fractions, World Scientific Publishing Co., 1992. [15] W. M. Schmidt, Diophantine Approximations, Lect. Not. Math, v. 785, 1980. [16] W. M. Schmidt, “Open problems in Diophantine approximations”, Approximations Diophantiennes et nombres transcendants' Luminy, 1982, Progress in Mathematics, Birkha?user, 1983, 271–289. [17] U. Shapira, “A solution to a problem of Cassels and Diophantine properties of cubic numbers”, Annals of Mathematics, 173:1 (2011), 543–557. [18] U. Shapira, Grids with dense values, 2011, arXiv: 1101.3941. [19] J. Tseng, “Badly approhimable affine forms and Schmidt games”, J. Number Theory, 129:12 (2009), 3020–3025. |