Solution of Signorini's problem with nonhomogeneous boundary condition |
A. V. Pachina |
2001, issue 1, P. 81–89 |
Abstract |
Signorini's problem with nonhomogeneous boundary condition is analyzed and solved. Iteration algorithm for solving this problem is constructed and proved. Algorithm is based on combination of variationaly-difference and convex programming methods. |
Keywords: |
Download the article (PDF-file) |
References |
[1] G. Dyuvo, Zh. L. Lions, Neravenstva v mexanike i fizike, Nauka, M., 1980, 480 s. [2] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proekcionno-setochnye metody, Nauka, M., 1975, 430 s. [3] A. A. Kaplan, R. V. Hamm, “K xarakteristike minimiziruyushhix posledovatel'nostej dlya zadachi Sin'orini”, Doklad AH SSSR, 273:4 (1983), 797–800. [4] A. S. Antipin, Metody nelinejnogo programmirovaniya, osnovannye na pryamoj i dvojstvennoj modifikacii funkcii Lagranzha, Preprint VHII sistemnyx issledovanij, M., 1979, 74 s. [5] K. Grossman, A. A. Kaplan, Helinejnoe programmirovanie na osnove bezuslovnoj minimizacii, Hauka, Hovosibirsk, 1981, 182 s. [6] A. S. Antipin, “O sxodimosti i ocenkax skorosti sxodimosti proksimal'nyx metodov k nepodvizhnym tochkam e'kstremal'nyx otobrazhenij”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704. [7] R. V. Hamm, “O nekotoryx algoritmax dlya resheniya zadachi Sin'orini”, Optimizaciya, 50:33 (1983), 63–78. [8] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, Springer-Verlag, Berlin –Heidelberg –New York, 1997, 214–228. [9] H. Brezis, “Proble?mes unilate?raux.”, J. de Math. Pures et Applique?es, 51 (1972), 1–168. |