Far Eastern Mathematical Journal

To content of the issue


Solution of Signorini's problem with nonhomogeneous boundary condition


A. V. Pachina

2001, issue 1, P. 81–89


Abstract
Signorini's problem with nonhomogeneous boundary condition is analyzed and solved. Iteration algorithm for solving this problem is constructed and proved. Algorithm is based on combination of variationaly-difference and convex programming methods.

Keywords:

Download the article (PDF-file)

References

[1] G. Dyuvo, Zh. L. Lions, Neravenstva v mexanike i fizike, Nauka, M., 1980, 480 s.
[2] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proekcionno-setochnye metody, Nauka, M., 1975, 430 s.
[3] A. A. Kaplan, R. V. Hamm, “K xarakteristike minimiziruyushhix posledovatel'nostej dlya zadachi Sin'orini”, Doklad AH SSSR, 273:4 (1983), 797–800.
[4] A. S. Antipin, Metody nelinejnogo programmirovaniya, osnovannye na pryamoj i dvojstvennoj modifikacii funkcii Lagranzha, Preprint VHII sistemnyx issledovanij, M., 1979, 74 s.
[5] K. Grossman, A. A. Kaplan, Helinejnoe programmirovanie na osnove bezuslovnoj minimizacii, Hauka, Hovosibirsk, 1981, 182 s.
[6] A. S. Antipin, “O sxodimosti i ocenkax skorosti sxodimosti proksimal'nyx metodov k nepodvizhnym tochkam e'kstremal'nyx otobrazhenij”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704.
[7] R. V. Hamm, “O nekotoryx algoritmax dlya resheniya zadachi Sin'orini”, Optimizaciya, 50:33 (1983), 63–78.
[8] R. V. Namm, “Stable methods for ill-posed variational inequalities in mechanics”, Lecture Notes in Economics and Mathematical Systems, 452, Springer-Verlag, Berlin –Heidelberg –New York, 1997, 214–228.
[9] H. Brezis, “Proble?mes unilate?raux.”, J. de Math. Pures et Applique?es, 51 (1972), 1–168.

To content of the issue