The analyze of the applicability of diffusion approximation for the radiation transfer equation with account of Сompton scattering |
I. P. Yarovenko |
2011, issue 1, P. 99–107 |
Abstract |
This paper deals with diffusion approximation for the radiation transfer equation which takes into account Сompton scattering on electrons. An analytical and a numerical examples are used to compare the solution of radiation transfer equation with it's diffusion approximation. |
Keywords: radiation transfer theory, diffusion approximation, Сompton scattering |
Download the article (PDF-file) |
References |
[1] U. Fano, L. Spenser, M. Berger, Perenos gamma izlucheniia, Gosatomizdat, M., 1963. [2] I. P. Iarovenko, “O diffuzionnom priblizhenii dlia uravneniia perenosa izlucheniia s uchetom komptonovskogo rasseianiia”, Dal'nevostochnyi mat. zhurnal, 9:1-2 (2009), 209–218. [3] D. S. Anikonov, D. S. Konovalova, “Kraevaia zadacha dlia uravneniia perenosa s chisto komptonovskim rasseianiem”, Sibirskii matematicheskii zhurnal, 46:1 (2005), 3–16. [4] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, Poorly Visible Media in X-Ray Tomography, VSP, Utrecht-Boston, 2002. [5] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978. [6] A. D. Polianin, Spravochnik po lineinym uravneniiam matematicheskoi fiziki, FIZMATLIT, M., 2001. [7] I. M. Sobol', Chislennye metody Monte-Karlo, Nauka, M., 1973. [8] J. H. Hubbell, S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint National Institute of Standard and Technology, Gaithersburg, 1995. [9] P. L'Ecuyer, S. Cote, “Implementing a Random Number Package with Splitting Facilities”, ACM Trans. on Math. Software, 17:1 (1991), 98–111. [10] V. S. Galishev, V. I. Ogievetskii, A. N. Orlov, “Teoriia mnogokratnogo rasseianiia gamma-luchei”, Uspekhi fizicheskikh nauk, 51:2 (1957), 161–214. |