The average length of Minkowski's diagonal continued fractions |
O. A. Gorkusha |
2011, issue 1, P. 10–27 |
Abstract |
We prove asymptotic formulae with two significant terms for the expectation of the random variable $s(c/d;1)$ — length of Minkowski's diagonal continued fraction when the variables $c$ and $d$ range over the set $1 \le c \le d \le R<\infty$. |
Keywords: Continued fractions, geometry of numbers, lattices |
Download the article (PDF-file) |
References |
[1] H. Minkowski, “Zur Theorie der Kettenbruche”, Annales de l'Ecole Normale Superieure, 13:3 (1894), 41–60 [2] B. Valle?e, “Dynamical analysis of a class of Euclidean Algorithms”, Theoret. Comput. Sci., 297 (2003), 447–486 [3] Y. Hartono, Ergotic properties of continued fraction algorithms, Thesis (Dr.)–Technische Universiteit Delft (The Netherlands), 2003, ISBN: 90-407-2381-8, 119 s. [4] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 [5] D. E. Knuth, “Evaluation of Porter's Constant”, Comp. and Maths. with Appls., 2 (1976), 137–139 [6] G. H. Norton, “On the asymptotic analysis of the Euclidean algorithm”, J. Symbolic Comput., 10:1 (1990), 53–58 [7] A. V. Ustinov, “Asimptoticheskoe povedenie pervogo i vtorogo momenta dlja chisla shagov v algoritme Jevklida”, Izvestija RAN, 72:5 (2008), 189–224 [8] V. Baladi, B. Valle?e, “Euclidean algorithms are Gaussian”, J. Number Theory, 110 (2005), 331–386 [9] A. V. Ustinov, “O srednem chisle shagov v algoritme Evklida s vyborom minimal'nogo po modulju ostatka”, Matematicheskie zametki, 85:1 (2009), 153–156 [10].A. V. Ustinov, “O srednem chisle shagov v algoritme Evklida s nechetnymi nepolnymi chastnymi”, Matematicheskie zametki, 88:4 (2010), 594–604 [11] O.A. Gorkusha, “O konechnyh cepnyh drobjah special'nogo vida”, Chebyshevskij sbornik, 9:1(25) (2008), 80–108 [12] A. A. Karacuba, Osnovy analiticheskoj teorii chisel, Nauka, M., 1983, 500 s. [13] A. Ja. Hinchin, Izbrannye trudy po teorii chisel, MCNMO, M., 2006, 260 s. [14] D. E. Knuth, A. C. Yao, “Analysis of the Subtractive Algorithm for Greatest Common Divisors”, Proc. Nat. Acad. Sci. USA, 72:12 (1975), 4720–4722 |