Optimal control problem for stationary equations of elastic waves diffraction |
L. V. Illarionova |
2010, issue 1, P. 31–40 |
Abstract |
One consider the optimal control problem for stationary equations of elastic waves diffraction on three-dimensional inclusion in unbounded homogeneous medium. The problem is to minimize L2-deviation of pressure field in inclusion from the given. The control is the field source in the exterior medium. The solvability of problem is proved. The algorithm of is proposed. |
Keywords: stationary equations of elastic waves diffraction, optimal control problem, numerical solution |
Download the article (PDF-file) |
References |
[1] V. D. Kupradze, T. G. Gegeliya, M. O. Bashelejshvili, T. V. Burchuladze, Trexmernye zadachi matematicheskoj teorii uprugosti i termouprugosti, Nauka, M., 1976. [2] S. I. Smagin, Integral'nye uravneniya zadach difrakcii, Dal'nauka, Vladivostok, 1995. [3] S. I. Smagin, “Ob odnoj sisteme integral'nyx uravnenij teorii difrakcii”, Differenc. uravneniya, 26:8 (1990), 1432–1437. [4] A. A. Samarskij, Teoriya raznostnyx sxem, Nauka, M., 1977. [5] G. I. Marchuk, V. I. Agoshkov, Vvedenie v proekcionno-setochnye metody, Nauka, M., 1981. [6] D. Kolton, R. Kress, Metody integral'nyx uravnenij v teorii rasseyaniya, Mir, M., 1987. [7] N. E. Ershov, S. I. Smagin, “Priblizhennoe reshenie prostranstvennyx zadach akustiki i uprugosti metodom potencialov”, V sb. Matematicheskie modeli, metody i prilozheniya, Izd-vo XGPU, Xabarovsk, 2002, 45–115. [8] N. E. Ershov, S. I. Smagin, “Reshenie prostranstvennyx zadach akustiki i uprugosti metodom potencialov”, Differenc. uravneniya, 29:9 (1993), 1517–1525. [9] L. V. Bloxina, N. E. Ershov, “Chislennoe reshenie integral'nyx uravnenij prostranstvennoj zadachi rasprostraneniya i difrakcii akusticheskix voln”, V sb. Dokl. mezhdunarodnoj konferencii po vychislitel'noj matematike, IM SO RAN, Novosibirsk, 2004, 407–410 . [10] A. Kirsch, “A weak bang-bang principle for the control of an exterior robin problem”, Applicable Analysis, 13 (1982), 65–75. [11] R. Kress, W. Rundell, “Inverse scattering for shape and impedance”, Inverse Problems, 2001, no. 17, 1075–1085. [12] T. S. Angell, A. Kirsch, Optimization methods in electromagnetic radiation, Springer, 2004. [13] Cao Yanzhao, D. Stanescu, “Shape optimization for noise radiation problems”, Computers and Mathematics with Applications, 2002, no. 44, 1527–1537. [14] A. Habbal, “Nonsmooth shape optimization applied to linear acoustic”, SIAM Journal on Optimization, 8:4 (1998), 989–1006. [15] A. A. Goryunov, A. V. Saskovec, Obratnye zadachi rasseyaniya v akustike, Izd-vo MGU, M., 1989. [16] A. S. Savenkova, “Mul'tiplikativnoe upravlenie v zadache rasseyaniya dlya uravneniya Gel'mgol'ca”, Sib. zhurn. industr. matem., 10:1 (2007), 128–139. [17] L. V. Illarionova, “Zadacha optimal'nogo upravleniya dlya stacionarnyx uravnenij difrakcii akusticheskix voln”, Zhurn. vych. matem. i matem. Fiz., 48:2 (2008), 297–308. |