The solvability of extremal problems for Poisson equation and Stokes system |
A. A. Illarionov |
2008, issue 2, P. 164–170 |
Abstract |
One consider the extremal problems for Poisson equation and Stokes system which are to minimize the $L^2$-difference solution from given function. The sufficient conditions of solvability in the Sobolev space $H^1$ are obtained. It is showed that these conditions are necessary in some cases. |
Keywords: extremal problems, optimal control for partial differential equations |
Download the article (PDF-file) |
References |
[1] G. V. Alekseev, V. V. Malykin, “Chislennoe issledovanie stacionarnyx e'kstremal'nyx zadach dlya dvumernyx uravnenij vyazkoj zhidkosti”, Vychisl. Texnologii, 2:5 (1993). [2] G. V. Alekseev, V. V. Malikin, “Numerical analysis of optimal control problems for Navier – Stokes equations”, CFD, 3:1 (1994). [3] A. V. Fursikov, Optimal'noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999. [4] A. Yu. Chebotarev, “Granichnye e'kstremal'nye zadachi dinamiki vyazkoj neszhimaemoj zhidkosti”, Sib. mat. zhurn., 34:5 (1993), 202–213. [5] A. Yu. Chebotarev, “Princip maksimuma v zadache granichnogo upravleniya techeniem vyazkoj zhidkosti”, Sib. mat. zhurn., 34:6 (1993), 189–197. [6] A. Yu. Chebotarev, “Normal'nye resheniya kraevyx zadach dlya stacionarnyx sistem tipa Nav'e – Stoksa”, Sib. mat. zhurn., 36:5 (1995), 934–942. [7] A. A. Illarionov, “Asimptotika reshenij zadachi optimal'nogo upravleniya dlya stacionarnyx uravnenij Nav'e – Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 1061–1070. [8] A. A. Illarionov, “Optimal'noe granichnoe upravlenie stacionarnym techeniem vyazkoj neodnorodnoj neszhimaemoj zhidkosti”, Matem. zametki, 69:5 (2001), 666–678. [9] A. A. Illarionov, “Ob asimptotike reshenij zadachi optimal'nogo upravleniya dlya stacionarnyx uravnenij Nav'e – Stoksa”, Zh. vychisl. matem. i matem. fiz., 41:7 (2001), 1045–1056. [10] G. V. Alekseev, “Razreshimost' stacionarnyx zadach granichnogo upravleniya dlya uravnenij teplovoj konvekcii”, Sib. mat. zhurn., 39:5 (1998), 982–998. [11] V. A. Solonnikov, “Ob obshhix kraevyx zadachax dlya sistem, e'llipticheskix v smysle A. Daglisa – L. Nirenberga. II”, Trudy MIAN SSSR, XCII, 1966, 233–297. [12] O. A. Ladyzhenskaya, N. N. Ural'ceva, Linejnye i kvazilinejnye uravneniya e'llipticheskogo tipa, Nauka, M., 1973. [13] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoj neszhimaemoj zhidkosti, Nauka, M., 1970. [14] S. Agmon, A. Duglis, L. Nirenberg, Ocenki vblizi granicy reshenij e'llipticheskix uravnenij v chastnyx proizvodnyx pri obshhix granichnyx usloviyax, Izd-vo inostr. lit., M., 1962, 205 s. [15] A. A. Illarionov, “O razreshimosti kraevyx zadach dlya stacionarnyx uravnenij Nav'e-Stoksa”, Dal'nevostochnyj matem. Zhurn., 2:1 (2001), 16–36. |