Far Eastern Mathematical Journal

To content of the issue


The solvability of extremal problems for Poisson equation and Stokes system


A. A. Illarionov

2008, issue 2, P. 164–170


Abstract
One consider the extremal problems for Poisson equation and Stokes system which are to minimize the $L^2$-difference solution from given function. The sufficient conditions of solvability in the Sobolev space $H^1$ are obtained. It is showed that these conditions are necessary in some cases.

Keywords:
extremal problems, optimal control for partial differential equations

Download the article (PDF-file)

References

[1] G. V. Alekseev, V. V. Malykin, “Chislennoe issledovanie stacionarnyx e'kstremal'nyx zadach dlya dvumernyx uravnenij vyazkoj zhidkosti”, Vychisl. Texnologii, 2:5 (1993).
[2] G. V. Alekseev, V. V. Malikin, “Numerical analysis of optimal control problems for Navier – Stokes equations”, CFD, 3:1 (1994).
[3] A. V. Fursikov, Optimal'noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999.
[4] A. Yu. Chebotarev, “Granichnye e'kstremal'nye zadachi dinamiki vyazkoj neszhimaemoj zhidkosti”, Sib. mat. zhurn., 34:5 (1993), 202–213.
[5] A. Yu. Chebotarev, “Princip maksimuma v zadache granichnogo upravleniya techeniem vyazkoj zhidkosti”, Sib. mat. zhurn., 34:6 (1993), 189–197.
[6] A. Yu. Chebotarev, “Normal'nye resheniya kraevyx zadach dlya stacionarnyx sistem tipa Nav'e – Stoksa”, Sib. mat. zhurn., 36:5 (1995), 934–942.
[7] A. A. Illarionov, “Asimptotika reshenij zadachi optimal'nogo upravleniya dlya stacionarnyx uravnenij Nav'e – Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 1061–1070.
[8] A. A. Illarionov, “Optimal'noe granichnoe upravlenie stacionarnym techeniem vyazkoj neodnorodnoj neszhimaemoj zhidkosti”, Matem. zametki, 69:5 (2001), 666–678.
[9] A. A. Illarionov, “Ob asimptotike reshenij zadachi optimal'nogo upravleniya dlya stacionarnyx uravnenij Nav'e – Stoksa”, Zh. vychisl. matem. i matem. fiz., 41:7 (2001), 1045–1056.
[10] G. V. Alekseev, “Razreshimost' stacionarnyx zadach granichnogo upravleniya dlya uravnenij teplovoj konvekcii”, Sib. mat. zhurn., 39:5 (1998), 982–998.
[11] V. A. Solonnikov, “Ob obshhix kraevyx zadachax dlya sistem, e'llipticheskix v smysle A. Daglisa – L. Nirenberga. II”, Trudy MIAN SSSR, XCII, 1966, 233–297.
[12] O. A. Ladyzhenskaya, N. N. Ural'ceva, Linejnye i kvazilinejnye uravneniya e'llipticheskogo tipa, Nauka, M., 1973.
[13] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoj neszhimaemoj zhidkosti, Nauka, M., 1970.
[14] S. Agmon, A. Duglis, L. Nirenberg, Ocenki vblizi granicy reshenij e'llipticheskix uravnenij v chastnyx proizvodnyx pri obshhix granichnyx usloviyax, Izd-vo inostr. lit., M., 1962, 205 s.
[15] A. A. Illarionov, “O razreshimosti kraevyx zadach dlya stacionarnyx uravnenij Nav'e-Stoksa”, Dal'nevostochnyj matem. Zhurn., 2:1 (2001), 16–36.

To content of the issue