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для стационарной модели сложного теплообмена. Доказана разрешимость за-
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Введение

При моделировании процессов сложного теплообмена с учетом внутреннего теп-
лового излучения хорошую эффективность показало использование диффузионно-
го P1–приближения для уравнения переноса излучения. Особую важность при этом
представляют задачи оптимального управления теплообменом. Анализ различных
постановок краевых задач и задач управления для диффузионных моделей слож-
ного теплообмена представлен в работах [1–9].

Для задач оптимального управления с ограничениями на управление в виде нера-
венств часто удается установить аналог принципа bang-bang, т.е. оптимальное управ-
ление принимает либо минимальное, либо максимальное значение в точках области
определения управления, где так называемая функция переключения не обраща-
ется в ноль. Последнее позволяет существенно упростить алгоритмы нахождения
оптимального управления для нелинейных систем. Отметим статью [7], в которой
предложен алгоритм решения задачи оптимального управления для квазистацио-
нарных уравнений сложного теплообмена и представлен обзор работ, использующих
bang-bang принцип для оптимального управления.

Для корректного построения алгоритма на основе принципа bang-bang важно
знать, что функция переключения не обращается в ноль на множестве ненулевой
меры. Обоснование этого приводит к релейности управления (строгий принцип bang-
bang). В противном случае нет информации об оптимальном управлении на таком

1Дальневосточный федеральный университет, 690922, г. Владивосток, о. Русский, п. Аякс, 10.
Электронная почта: chebotarev.ayu@dvfu.ru



272 А. Ю. Чеботарев

множестве. В качестве примера можно отметить работы [2,4,6], посвященные анали-
зу задач оптимального управления для уравнений сложного теплообмена, где в ка-
честве управления выбиралась чернота границы области и где установлен принцип
bang-bang. Однако в указанных работах не доказано, что функция переключения
не обращается в ноль на множестве ненулевой меры.

Данная работа посвящена анализу задачи оптимального управления для стацио-
нарных уравнений сложного теплообмена с граничным наблюдением и доказатель-
ству релейности оптимального управления.

Рассмотрим сложный теплообмен в ограниченной области Ω⊂R3, граница Γ ко-
торой состоит из двух участков Γ0,Γ1, Γ=Γ̄0∪Γ̄1, Γ0∩Γ1=∅. Стационарная диффу-
зионная модель (P1–приближение) имеет вид [1, 3]

−a∆θ + bκa(|θ|θ3 − φ) = u, −α∆φ+ κa(φ− |θ|θ3) = g, (1)

∂nθ
∣∣
Γ0
= 0, ∂nφ

∣∣
Γ0
= 0, a∂nθ + β(θ − θb)

∣∣
Γ1
= 0, α∂nφ+ γ(φ− θ4b )|Γ1

= 0. (2)

Здесь θ — нормализованная температура, φ — нормализованная интенсивность из-
лучения, усредненная по всем направлениям. Физический смысл параметров a, b,
κa, α, β, γ представлен в [3]. Управлением является плотность внутренних источ-
ников тепла u. Функция g моделирует плотность источников теплового излучения.
Символом ∂n обозначаем производную по направлению внешней нормали к грани-
це Γ.

Задача оптимального управления состоит в нахождении функций u, θ и φ, удо-
влетворяющих (1)-(2) при условии минимизации целевого функционала J(θ),

J(θ) =
1

2

∫
Γ0

(θ − θd)
2dΓ → inf, u ∈ Uad.

Здесь Uad⊂L2(Ω) — множество допустимых управлений,

Uad =
{
v ∈ L2(Ω) : supp v ⊂ Ω̄c, 0 ⩽ f1 ⩽ v|Ωc

⩽ f2
}
.

Область Ωc⊂Ω локализации управления и функции f1,2 ∈L2(Ωc) являются задан-
ными.

1. Формализация задачи оптимального управления

В дальнейшем считаем, что Ω — липшицева ограниченная область, Γ=∂Ω. Че-
рез Lq, 1⩽ q⩽∞, обозначаем пространства Лебега, через Hm — пространства Со-
болева Wm

2 . Пусть H=L2(Ω), V =H1(Ω), Y =V ×V , V ′ — пространство, сопряжен-
ное с пространством V . Пространство H отождествляем с пространством H ′, так
что V ⊂H=H ′⊂V ′. Обозначим через (h,z) значение функционала h∈V ′ на функ-
ции z∈V , совпадающее со скалярным произведением в H, если h,z∈H, ∥z∥2=(z,z).

Будем предполагать, что исходные данные удовлетворяют условиям:
(c1) a,b,κa,α,β=const>0, g∈H, g⩾0, θd∈L2(Γ0);
(c2)β,γ,θb∈L∞(Γ1), β⩾β0>0, γ⩾γ0>0, θb⩾µ>0, β0,γ0,µ=const.
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Определим операторы A1,A2 : V →V ′ и функционалы fb,gb ∈V ′, используя ра-
венства, справедливые для всех v∈V

(A1θ, v) = a(∇θ,∇v) +
∫
Γ1

βθv dΓ, (A2φ, v) = α(∇φ,∇v) +
∫
Γ1

γφv dΓ,

(fb, v) =

∫
Γ1

βθbv dΓ, (g, v) =

∫
Γ1

γθ4bv dΓ.

Будем использовать следующее обозначение [s]m := |s|msigns, m>0, s∈R для моно-
тонной степенной функции.

Пара y={θ,φ}∈Y называется слабым решением задачи (1)-(2), если

A1θ + bκa([θ]
4 − φ) = fb + u, A2φ+ κa(φ− [θ]4) = gb + g. (3)

Задача (С). Найти функции ŷ={θ̂,φ̂}∈Y , û∈Uad такие, что F (ŷ, û)=0,

J(θ̂) = inf
{
J(θ) : F (y, u) = 0, y = {θ, φ} ∈ Y, u ∈ Uad

}
. (4)

Здесь F :Y ×H→Y ′ — оператор ограничений,

F (y, u) =
{
A1θ + bκa([θ]

4 − φ)− fb − u, A2φ+ κa(φ− [θ]4)− gb − g
}
.

2. Разрешимость задачи оптимального управления

Для доказательства разрешимости задачи (4) будем использовать свойства ре-
шения краевой задачи (1)–(2).

Лемма 1. Пусть выполняются условия (c1), (c2), u ∈ Uad. Тогда существует един-
ственное слабое решение y = {θ, φ} ∈ Y задачи (1)–(2) такое, что θ ⩾ µ,

∥θ∥2V ⩽ K1

(
∥u∥2 + ∥g∥5/4 + ∥θb∥5L∞(Γ1)

)
, (5)

∥φ∥2V ⩽ K2

(
∥θ∥8 + ∥g∥2 + ∥θb∥8L∞(Γ1)

)
. (6)

Здесь положительные постоянные K1,2 зависят только от a, b, α, κa, β, β0, γ0,
∥γ∥L∞(Γ1) и Ω.

Д о к а з а т е л ь с т в о. Однозначная разрешимость задачи (1)–(2) и оценки (5),
(6) следуют из результатов [8]. Получим оценку положительности θ. Определим
неубывающую функцию µε : R → R, 0 < ε < µ, которая является аппроксимацией
функции min{t− µ, 0}, t ∈ R,

µε(t) =


t+ 2ε− µ, если t < −ε;
ε− µ, если |t| ⩽ ε;
t− µ, если t ∈ (ε, µ);
0, если t ⩾ µ.
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Умножим скалярно первое уравнение в (3) на µε(θ) ∈ V , второе — на bµε([φ]
1/4) ∈ V

и сложим полученные равенства. Тогда

a(∇θ,∇µε(θ)) +

∫
Γ1

β(θ − θb)µε(θ) dΓ + αb(∇φ,∇µε([φ]
1/4))+

+

∫
Γ1

γ(φ− θ4b )µε([φ]
1/4) dΓ + bκa([θ]

4 − φ), µε(θ)− µε([φ]
1/4)) =

= (f, µε(θ)) + (g, µε([φ]
1/4)) ⩽ 0. (7)

В силу монотонности функции µε справедливы неравенства

(θ − θb)µε(θ) ⩾ (θ − µ)µε(θ) ⩾ 0, ∇φ · ∇µε([φ]
1/4) ⩾ 0,

(φ− θ4b )µε([φ]
1/4) ⩾ 0, ([θ]4 − φ)(µε(θ)− µε([φ]

1/4) ⩾ 0.

Поэтому, отбросив в (7) неотрицательные в силу указанных неравенств слагаемые,
получим

a(∇θ,∇µε(θ)) +

∫
Γ1

β(θ − µ)µε(θ)dΓ ⩽ 0. (8)

Переходя в (8) к пределу при ε→+0, заключаем

a(∇ψ,∇ψ) +
∫
Γ1

βψ2dΓ ⩽ 0, где ψ = min{θ − µ, 0}.

Следовательно, ψ=0, что означает справедливость почти всюду в Ω неравенства
θ⩾µ.

Теорема 1. Пусть выполняются условия (c1), (c2). Тогда существует решение
задачи (C).

Д о к а з а т е л ь с т в о. Рассмотрим последовательность {yj , uj} ∈ Y × Uad,

J(θj) → Ĵ = inf
{
J(θ) : u ∈ Uad, F (y, u) = 0

}
,

где yj = {θj , φj} и при этом

A1θj + bκa([θj ]
4 − φj) = fb + uj , A2φj + κa(φj − [θj ]

4) = gb + g. (9)

Последовательность {uj} ограничена в H, и поэтому в силу оценок (5), (6) заклю-
чаем, что последовательность {yj} ограничена в Y . Переходя при необходимости к
подпоследовательностям, получаем сходимости

uj → û слабо в H; θj → θ̂, φj → φ̂ слабо в V, сильно в L3(Ω). (10)

Результатов сходимости (10) достаточно для предельного перехода в (9), причем
переход в нелинейных членах гарантируется оценкой

|([θj ]4 − [θ̂]4, v)| ⩽ 2
(
∥θj∥3L6(Ω) + ∥θ̂∥3L6(Ω)

)
∥v∥L6(Ω)∥θj − θ̂∥L3(Ω) ∀v ∈ L6(Ω).
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Следовательно, A1θ̂+bκa([θ̂]
4− φ̂)= fb+ û, A2φ̂+κa(φ̂− [θ̂]4)=gb+g, т.е. F (ŷ, û)=0,

ŷ={θ̂,φ̂}. Кроме того, û∈Uad и

Ĵ ⩽ J(θ̂) ⩽ lim J(θj) = Ĵ .

Поэтому {ŷ, û} — решение задачи (C).

3. Необходимые условия оптимальности

Для получения системы оптимальности будем использовать принцип Лагранжа
для гладко-выпуклых экстремальных задач [10, гл. 2, теорема 1.5]. Установим невы-
рожденность условий оптимальности, что следует из того, что образ производной
оператора ограничений совпадает с пространством Y ′.

Лемма 2. Пусть выполняются условия (c1), (c2), u ∈ Uad. Для y ∈ Y производ-
ная F ′

y : Y → Y ′ является эпиморфизмом, ImF ′
y = Y ′.

Д о к а з а т е л ь с т в о. Уравнение F ′
yq = z = {z1, z2} ∈ Y ′ равносильно краевой

задаче

A1q1 + bκa(4|θ|3q1 − q2) = z1, A2q2 + κa(q2 − 4|θ|3q1) = z2, q = {q1, q2} ∈ Y. (11)

Как показано в [6], однородная задача (11) имеет только нулевое решение. Следо-
вательно, фредгольмовская задача (11) разрешима для всех z∈Y ′.

Теорема 2. Пусть выполняются условия (c1), (c2). Пусть ŷ = {θ̂, φ̂} ∈ Y ,
û ∈ Uad — решение задачи (C). Тогда существует единственное сопряженное состоя-
ние p = {p1, p2} ∈ Y такое, что тройка (ŷ, û, p) удовлетворяет условиям

A1p1 + 4|θ̂|3κa(bp1 − p2) = B(θd − θ̂), A2p2 + κa(p2 − bp1) = 0, (12)

(p1, v − û) ⩽ 0, ∀v ∈ Uad. (13)

Здесь B : L2(Γ0)→V ′, (Bw,z)=
∫
Γ0

wzdΓ.

Д о к а з а т е л ь с т в о. В силу леммы 2 функция Лагранжа задачи (C) опреде-
ляется равенством

L(y, u, p) = J(θ)+
(
A1θ + bκa([θ]

4 − φ)− fb − u, p1
)
+
(
A2φ+ κa(φ− [θ]4)− gb − g, p2

)
,

где y = {θ, φ} ∈ Y , u ∈ Uad, p = {p1, p2} ∈ Y. В соответствии с принципом Лагранжа
равенства L′

θ(ŷ, û, p) = 0, L′
φ(ŷ, û, p) = 0 дают сопряженную систему (12), а вариаци-

онное неравенство (L′
u(ŷ, û, p), u− û) ⩾ 0 ∀u ∈ Uad приводит к условию (13).

4. Релейность оптимального управления

Условия оптимальности (12)–(13) позволяют обосновать релейность оптимально-
го управления (строгий принцип bang-bang), используя следующий результат.
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Лемма 3. Пусть выполняются условия (c1), (c2), тройка {θ̂, φ̂, û} — решение за-
дачи (C), {p1, p2} — сопряженное состояние. Тогда либо p1(x) ̸= 0 почти всюду в Ω,
либо p1 = p2 = 0 в Ω.

Д о к а з а т е л ь с т в о. Отметим сразу, и это важно для дальнейшего, что θ̂ ⩾
µ > 0 в Ω в силу леммы 1. Из уравнений (12) следует, что почти всюду в Ω справед-
ливы равенства

−a∆p1 + 4|θ̂|3κa(bp1 − p2) = 0, −α∆p2 + κa(p2 − bp1) = 0. (14)

Поэтому ∆p1,2∈L2(Ω) и, как следует из (14),

−α∆2p2 + κa(∆p2 − b∆p1) = 0, ∆p1 = −4αθ̂3

a
∆p2.

Таким образом, функция ξ=∆p2 удовлетворяет в Ω уравнению

−α∆ξ + κa(1 + 4αbθ̂3/a)ξ = 0.

Если на некоторой подобласти D⊂Ω положительной меры p1 = 0, то ∆p1
∣∣
D
= 0.

Тогда из первого уравнения (14) в силу положительности θ̂ следует, что p2
∣∣
D
=

0, ξ
∣∣
D
=∆p2

∣∣
D
=0. Из (14), используя свойство единственности продолжения для

эллиптических уравнений [11], заключаем, что ξ=∆p2=0 в Ω. Следовательно, p2−
bp1=0 и A2p2=0. Поэтому p2=0, а значит, и p1=0.

Заметим, что если p1=0, то p2=0 и можно найти такое управление û, что θ̂−θd=0

на участке границы Γ0.

Теорема 3. Пусть выполняются условия (c1), (c2). Если точная нижняя грань
целевого функционала в задаче (C) положительна, то p1 ̸= 0 почти всюду в Ω и
оптимальное управление является релейным, то есть почти всюду в Ωc

û(x) =

{
f1(x), если p1(x) < 0;
f2(x), если p1(x) > 0.

(15)

Д о к а з а т е л ь с т в о. Если p1 = p2 = 0 в Ω, то, как следует из первого уравне-
ния (12), справедливо равенство θ̂ = θd на участке наблюдения Γ0, которое проти-
воречит положительности минимального значения целевого функционала. Следова-
тельно, в силу леммы 3, p1 ̸= 0 почти всюду в Ω. Из вариационного неравенства (13)
вытекает, что

p1(x)(s− û(x)) ⩽ 0 ∀s ∈ [f1(x), f2(x)] для почти всех x ∈ Ωc.

Из полученного неравенства следует равенство (15).
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ABSTRACT

The problem of optimal control with boundary observation for a stationary

model of complex heat transfer is considered. The solvability of the problem

is proved and optimality conditions are obtained, on the basis of which the

strict principle of bang-bang is substantiated — the relay nature of optimal

control.

Key words: complex heat transfer, diffusion approximation, optimal control,

relay control.
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