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В работе получено точное нелинейное выражение для компонент тензора Рич-
чи и скалярной кривизны для изотропной неоднородной температурной дефор-
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которых возможна линеаризация компонент тензора Риччи. Получено условие
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Введение

Развитие аддитивных технологий в авиа- и судостроительной отрасли сталкива-
ется с барьером из ряда нерешенных проблем механики материалов, которая долж-
на обеспечивать механические свойства и ресурсные характеристики этих матери-
алов. Особенную актуальность приобретает решение задач о влиянии технологи-
ческих параметров на структуру материалов, которое невозможно представить без
моделей термомеханики. Теоретическое описание процессов необратимых измене-
ний внутренней структуры материалов при температурных воздействиях привело к
развитию отдельных направлений в механике сплошных сред, среди которых можно
выделить неевклидовы модели сплошной среды [1–4]. Необходимость анализа гео-
метрических параметров, определяемых гипотезами при моделировании сплошной
среды, установлена в работе [5]. Вариантов неевклидовых моделей сплошной среды
пока немного, систематически и последовательно выполняются исследования для
описания дефектных структур при моделировании зональной дезинтеграции пород
вокруг тоннелей и образцов горных пород и упругопластического состояния мате-
риалов. В направлении развития неевклидовых модельных представлений в данной
работе анализируется вид тензора Риччи для температурной деформации.
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Как известно, одной из гипотез построения классической механики сплошных
сред является гипотеза евклидова пространства. В настоящей работе рассматрива-
ется в некотором смысле минимальное расширение этой гипотезы с евклидова до
риманова пространства.

Основным объектом в геометрии, характеризующим отклонение некоторого мно-
гообразия от евклидова, является тензор кривизны Римана –Кристоффеля Ri

jkl. В
трехмерном случае он полностью определяется тензором Риччи Rjk [6] с компонен-
тами

Rjk =
∂Γi

ji

∂xk
−

∂Γi
jk

∂xi
+ Γi

kmΓm
ji − Γi

imΓm
jk,

где Γi
ji — компоненты симметричной связности, согласованной с метрикой gij . Мет-

рика многообразия деформированной сплошной среды g̃ij связана с исходной мет-
рикой gij тензором деформаций εij

g̃ij = gij + 2εij .

Для произвольного тензора деформаций тензор Риччи является довольно сложным
нелинейным выражением, лишь в линейном приближении (малых деформациях)
можно получить формулу [7]

Rij = ∆εij +∇i∇jε
k
k −∇i∇kεkj −∇j∇kεki, (1)

где ∇i — ковариантная производная по i-ой координате, ∆=gij∇i∇j — оператор
Лапласа.

Изменение температуры сплошной среды на ∆T = T̃ −T0, где T̃ — текущая тем-
пература, T0 — начальная температура, вызывает изменение линейных размеров
(деформацию)

edl =
d̃l − dl

dl
=

T∫
T0

α(T )dT, (2)

где dl — начальная длина некоторого элемента, d̃l – длина после деформации этого
элемента, α(T ) — истинный коэффициент линейного расширения, который в общем
анизотропном случае является тензором второго ранга. В данной работе рассмат-
ривается случай, когда α(T ) не зависит от направления, тогда деформация также
не зависит от направления и является изотропной.

Тензор деформации в этом случае в декартовой системе координат, соответству-
ющей начальной евклидовой конфигурации, будет диагональным, а в произвольной
криволинейной системе координат пропорциональным метрическому тензору

εij =
1

2

[
(e+ 1)2 − 1

]
gij ,

где e определена изменением температуры по (2). Обозначим

w =
1

2

[
(e+ 1)2 − 1

]
,
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тогда
εij = wgij . (3)

В линейном случае w совпадает с деформаций e, вызываемой температурой, и обыч-
но называется температурной деформацией.

Подстановка (3) в (1) дает выражение для линейной части тензора Риччи в слу-
чае температурной деформации

Rij = gij∆w +∇i∇jw. (4)

Однако в случае температурной деформации можно получить точные нелинейные
выражения для компонент тензора Риччи и скалярной кривизны, что и является
целью настоящей работы.

1. Тензор аффинной деформации

Пусть сплошная среда в недеформированном состоянии описывается в некоторой
криволинейной системе координат (x1,x2,x3) евклидова пространства компонентами
метрического тензора gij и символами Кристоффеля Γi

kl, связанными с метрикой

Γi
kl =

1

2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
. (5)

Компоненты тензора Риччи Rjk в данном случае равны нулю.
Рассмотрим случай неоднородной температурной деформации, когда

εij = w(x)gij .

Тогда компоненты метрики g̃ij деформированного состояния будут связаны с исход-
ной метрикой gij недеформированного состояния следующим образом:

g̃ij = gij(1 + 2w), (6)

а компоненты обратных метрик g̃ij и g̃ij —

g̃ij = gij(1 + 2w)−1. (7)

Компоненты связности Леви – Чивита в деформированном состоянии определя-
ются аналогичным (5) выражением

Γ̃i
kl =

1

2
g̃im

(
∂g̃mk

∂xl
+

∂g̃ml

∂xk
− ∂g̃kl

∂xm

)
. (8)

Подстановка (6) и (7) в (8) дает связь компонент связности Леви – Чивита в неде-
формированном и деформированном состояниях

Γ̃i
kl = Γi

kl +
1

1 + 2w

(
gik∇lw + gil∇kw − gkl∇iw

)
. (9)
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Введем тензор аффинной деформации [8] с компонентами:

Ei
kl = Γ̃i

kl − Γi
kl =

1

1 + 2w

(
gik∇lw + gil∇kw − gkl∇iw

)
. (10)

Нетрудно заметить, что тензор аффинной деформации, определенный по (10), сим-
метричен по нижним индексам.

Теперь (9) можно записать в виде

Γ̃i
kl = Γi

kl + Ei
kl. (11)

2. Тензор Риччи и скалярная кривизна

В деформированном состоянии компоненты тензора Риччи

R̃jk =
∂Γ̃i

ji

∂xk
−

∂Γ̃i
jk

∂xi
+ Γ̃i

kmΓ̃m
ji − Γ̃i

imΓ̃m
jk. (12)

Подставляя (11) в (12) и учитывая Rjk=0, получаем

R̃jk = ∇kE
i
ji −∇iE

i
jk + Ei

kmEm
ji − Em

jkE
i
im. (13)

Используя выражение для тензора аффинной деформации через температурную
деформацию (10), вычислим отдельно каждое слагаемое в (13):

∇kE
i
ji = ∇k

[
gii∇jw + gij∇iw − gij∇iw

1 + 2w

]
= − 2∇kw

(1 + 2w)2
(
gii∇jw + gij∇iw − gij∇iw

)
+

+
1

1 + 2w

(
gii∇k∇jw + gij∇k∇iw − gij∇k∇iw

)
=

3∇k∇jw

1 + 2w
− 6∇jw∇kw

(1 + 2w)2
,

∇iE
i
jk = ∇i

[
gik∇jw + gij∇kw − gkj∇iw

1 + 2w

]
= − 2∇iw

(1 + 2w)2
(
gik∇jw + gij∇kw − gkj∇iw

)
+

+
gik∇i∇jw + gij∇i∇kw − gkj∇i∇iw

1 + 2w
=

2∇j∇kw − gkj∆w

1 + 2w
− 2

2∇jw∇kw − gkj∇iw∇iw

(1 + 2w)2
,

Ei
kmEm

ji =
1

(1 + 2w)2
(
5∇kw∇jw − 2gkj∇iw∇iw

)
,

Em
jkE

i
im =

1

(1 + 2w)2
(
5∇kw∇jw − 3gkj∇iw∇iw

)
.

Теперь, подставляя все в (13), получаем

R̃jk =
∇j∇kw + gjk∆w

1 + 2w
− 3∇jw∇kw + gjk∇iw∇iw

(1 + 2w)2
. (14)

Сворачивая тензор Риччи с g̃ij в виде (7), получаем скалярную кривизну

R̃ = R̃jkg̃
jk =

4∆w

(1 + 2w)2
− 6|∇w|2

(1 + 2w)3
.
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Формула (14) в линейном порядке по w должна давать (4). Действительно, первое
слагаемое в линейном порядке дает (4), второе же слагаемое, очевидно, не имеет
первого порядка по w. В инвариантной бескоординатной форме формулу (14) можно
записать следующим образом:

ˆ̃R =
∇∇w + ĝ∆w

1 + 2w
− 3∇w ⊗∇w + ĝ|∇w|2

(1 + 2w)2
. (15)

3. Условия применимости линейного приближения

Для многих материалов при определенных условиях температурная деформация
пропорциональна только изменению температуры

w = αT (x),

где α — коэффициент линейного температурного расширения, T (x) — изменение
температуры. Тогда тензор Риччи и скалярная кривизна примут вид

R̂ = α

[
∇∇T (x) + ĝ∆T (x)

1 + 2αT (x)
− α

3∇T (x)⊗∇T (x) + ĝ|∇T (x)|2

(1 + 2αT (x))2

]
,

R = α

[
4∆T (x)

(1 + 2αT (x))2
− α

6|∇T (x)|2

(1 + 2αT (x))3

]
.

(16)

Для практических расчетов возникает вопрос о границах применимости линей-
ного приближения. Для определения этих границ разложим компоненты тензора
Риччи и скалярную кривизну (16) до второго порядка по α включительно, считая
α малым:

Rij = α [∇i∇jT (x) + gij∆T (x)]

−α2
[
3∇iT (x)∇jT (x) + 2T (x)∇i∇jT (x) + gij |∇T (x)|2 + 2gijT (x)∆T (x)

]
+ o(α2),

R = 4α∆T (x)− α2
[
16T (x)∆T (x) + 6|∇T (x)|2

]
+ o(α2).

Условием применимости линейного приближения для скалярной кривизны является
неравенство

4αT (x) + α
3|∇T (x)|2

2∆T (x)
≪ 1.

Первое слагаемое для случая малых деформаций этому условию удовлетворяет.
Таким образом, должно выполняться неравенство

α
|∇T (x)|2

∆T (x)
≪ 1. (17)

Условием применимости линейного приближения для компонент тензора Риччи
является неравенство

2αT (x) + α
3∇iT (x)∇jT (x) + gij |∇T (x)|2

∇i∇jT (x) + gij∆T (x)
≪ 1. (18)
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Для диагональных компонент тензора Риччи условие (18) выполняется при вы-
полнении условия (17). Для недиагональных компонент в ортогональной системе
координат условие (18) упростится:

α
∇iT (x)∇jT (x)

∇i∇jT (x)
≪ 1. (19)

Нетрудно заметить, что если выполняется (19) для любых пар индексов, то усло-
вия (18) и (17) также выполняются. Таким образом, условие (19) является доста-
точным для того, чтобы можно было пользоваться линейным приближением (4).

4. Условие евклидовости деформированного состояния

Естественным образом возникает вопрос, при каких температурных полях тензор
Риччи останется нулевым, а пространство материального континуума евклидовым.
Очевидно, что если тензор Риччи равен нулю, то и скалярная кривизна тоже равна
нулю:

R̂ =
4∆w

(1 + 2w)2
− 6|∇w|2

(1 + 2w)3
= 0,

откуда
∆w =

3|∇w|2

2(1 + 2w)
. (20)

Далее, подставляя (20) в (14) и упрощая, получаем

Rjk =
∇j∇kw

1 + 2w
− 3∇jw∇kw

(1 + 2w)2
+

gjk|∇w|2

2(1 + 2w)2
= 0. (21)

Одно решение очевидно — это ∇w=0. Предположим, что есть другие решения,
и разделим на ∇w уравнение (21), тогда получим

gjk = 6
∇jw∇kw

|∇w|2
− 2(1 + 2w)

∇j∇kw

|∇w|2
,

то есть получилась параметризация невырожденного метрического тензора gjk од-
ной скалярной функцией w, что невозможно. Таким образом, только постоянное
изменение температуры по всему объему оставляют тензор Риччи тривиальным.

Однако в линейном случае, как известно [9], для евклидовости деформирован-
ного состояния достаточно, чтобы

∇j∇kw = 0,

откуда ∇w=C⃗, где C⃗ — некоторый постоянный вектор, который можно представить
в виде C⃗=Cc⃗, где |⃗c|=1. Нетрудно посчитать тензор Риччи в этом случае по (15):

Rjk = −3CjCk + gjk|C⃗|2

(1 + 2w)2
= −C2 3cjck + gjk

(1 + 2w)2
. (22)

При этом очевидно C2∼α2, то есть (22) является поправкой второго порядка по α.
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ABSTRACT

An exact nonlinear expression is obtained for the components of the Ricci

tensor and scalar curvature for isotropic inhomogeneous temperature de-

formation. The conditions in the field of temperature variation are given,

under which linearization of the components of the Ricci tensor is possible.

The condition for the Euclidean nature of the deformed state is obtained.
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