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гармонической цепочки с диссипацией

Рассматривается задача о собственных значениях для динамической системы,
описывающей в координатах Шредингера колебания однородной гармониче-
ской цепочки с диссипацией на границах. Комбинаторная формула Лагранжа
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Введение

В работе рассматривается динамическая система, заданная как граничная задача
для дифференциально-разностного уравнения второго порядка:

q̈l = ql+1 − 2ql + ql−1, l = 0, ... , L− 1, (1)

bq̇0 + q0 − q−1 = 0, qL − qL−1 − cq̇L−1 = 0. (2)

Эта система описывает колебания однородной гармонической цепочки с диссипацией
на границах. Здесь ql, l=0,...,L−1, — эволюционные переменные системы, b,c<0 —
постоянные, характеризующие диссипацию, L — размерность системы.

Координаты Шредингера определяются выражениями [1,2]

x2l = q̇l, x2l+1 = ql+1 − ql, l ∈ Z.
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Электронная почта: gudimenko@iam.dvo.ru (А.И. Гудименко), likhosherstov.02@mail.ru
(А.В. Лихошерстов).



Применение формулы Лагранжа для вычисления собственных чисел . . . 233

В этих координатах уравнения (1), (2) записываются в виде

ẋl = xl+1 − xl−1, l = 0, ... , N − 1,

x−1 + bx0 = 0, xN − cxN−1 = 0,
(3)

где N =2L−1, или в матричной форме — ẋ=Ax, где x=(x0,... ,xN−1)
T и

A =


b 1 0−1 0 1

. . . . . . . . .
−1 0 10 −1 c

 .

С граничной задачей (3) ассоциирована задача о собственных значениях

λyl = yl+1 − yl−1, l = 0, ... , N − 1,

y−1 + by0 = 0, yN − cyN−1 = 0.
(4)

Введём последовательность многочленов Pl(λ), l=−2,−1,..., как решение рекуррент-
ного соотношения

λyl = yl+1 − yl−1, l = −1, 0, ... , (5)

с начальными условиями y−2 =1, y−1 =0. Нетрудно проверить [3], что в терминах
этих многочленов решение задачи (4) представляется в виде

yl = Pl(λ)− bPl−1(λ), l = 0, . . . , N,

где λ — корень характеристического уравнения

PN (λ)− (b+ c)PN−1(λ) + bcPN−2(λ) = 0. (6)

Введём спектральную переменную z, полагая λ= z−1/z. Тогда решение начальной
задачи для (5) выписывается явно

Pl(λ) =
zl+1 − (−z)−l−1

z + z−1
, l = −2,−1, . . . , (7)

и подстановка (7) в (6) приводит при z ̸=±i к эквивалентному (6) уравнению pN (z)=0,
где

pN (z) = z2N (z − b)(z − c)− (1 + bz)(1 + cz). (8)

Настоящая работа является продолжением работы [3], посвящённой изучению
структуры и расположения на комплексной плоскости корней многочлена (8). Но-
вый результат состоит в представлении логарифмов этих корней (кроме не более
двух пар так называемых исключительных корней) степенным рядом по парамет-
ру 1/N , основываясь на одной из форм формулы обращения Лагранжа [4, p. 150]
(см. также [5, p. 106] и [6, p. 133]). При этом мы ограничиваемся случаем b, c < 0

и нечётного N . Сравнение аппроксимаций корней на основе полученного ряда и
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численных алгоритмов приложения MAPLE показывает хорошую согласованность
этих аппроксимаций как по их степеням, так и по числу N→∞, причём совокупно
по всем корням. Это позволяет предположить, что найденный ряд по отношению
к корням является равномерно сходящимся и одновременно равномерным асимп-
тотическим разложением своей суммы. В настоящей статье предпринята попытка
аналитического обоснования этих утверждений.

Интерес к изучению корней многочлена (8) обусловлен следующими причинами.
1. Матрица A относится к специальному, но широкому классу тридиагональных

матриц, впервые рассмотренному Losonczi [7] и активно изучаемому в последние де-
сятилетия (см. обзорную статью [8]). Собственные числа этих матриц аналитически
вычислены только в отдельных случаях. Для матрицы A — это случаи b= c=0 и
b=−c=±1.

2. В частном случае b= c=±1 факторизация многочлена (8) приводит к ха-
рактеристическому многочлену последовательности обобщённых чисел Пелля. Раз-
личного вида обобщения этих чисел также являются в последнее время предметом
активного исследования (см. статью [9] и ссылки в ней).

3. Многочлен (8) относится к классу возвратных многочленов. Он удовлетворя-
ет условию, что если z — корень многочлена, то −1/z тоже корень. Такие корни
мы называем дуальными. Проблема, связанная с возвратными многочленами, —
нахождение условий, определяющих их локацию (см., например, [10]). В нашем слу-
чае неисключительные корни многочлена (8) лежат на единичной окружности при
b=−c и b=−1/c. При b,c< 0 и N→∞ неисключительные корни стремятся к этой
окружности слева.

4. Добавление в граничные условия (2) функций, представляющих гауссов дельта-
коррелированный случайный процесс, приводит к уравнениям ланжевеновской гар-
монической цепочки — классической модели для изучения одномерного теплового
потока. Хотя в пределе t→∞ этот поток давно вычислен [11,12], сохраняется инте-
рес, например, к переходным тепловым процессам, где может возникнуть необходи-
мость в явном выражении собственных частот цепочки. В работе [13] предложены
асимптотические формулы для собственных частот ланжевеновской цепочки. Наши
формулы являются более общими и точными.

5. Предложенный метод нахождения корней многочлена (8) может быть обоб-
щён на многочлены более общего вида. Представляет интерес, например, вычисле-
ние корней дистантных многочленов p(z)zN + q(z) = 0, когда p и q — многочлены
одинаковой степени, значительно меньшей N ∈N.

Отметим, что по тематике статьи есть несколько работ в Дальневосточном ма-
тематическом журнале (см., например, работу [14] и ссылки в ней).

Помимо Введения статья включает два раздела. В первом мы формулируем и
доказываем теорему о представлении корней характеристического многочлена с по-
мощью ряда Лагранжа, о равномерной сходимости этого ряда и о представлении
суммы ряда равномерным асимптотическим разложением. Во втором мы сравни-
ваем результаты вычисления корней, полученные на основе частичных сумм ряда
Лагранжа, со значениями корней, полученными численно в программе MAPLE.



Применение формулы Лагранжа для вычисления собственных чисел . . . 235

1. Основное утверждение

Численный анализ показывает, что при фиксированных b,c и N→∞ все корни
многочлена pN (z), за исключением не более двух пар дуальных корней, стремятся
расположиться на единичной окружности |z|=1 комплексной плоскости. Визуально
это расположение выглядит как на рис. 1.

Рис. 1. Корни многочлена pN (z) на комплексной плоскости при b=−1.5, c=−2 и
N =19.

В работе [3] мы показали аналитически, что исключительные корни, то есть те,
что при N→∞ не стремятся к единичной окружности, описываются следующим
образом.

(i) Если b < −1 и c < −1, то имеется четыре исключительных корня. Эти корни
различные и вещественные; один стремится к b, другой к c, третий и четвер-
тый — к дуальным значениям.

(ii) Если b < −1 и −1 ⩽ c < 0, то имеется два исключительных корня. Оба корня
вещественные, один стремится к b, другой — к дуальному значению. То же
верно при замене b⇄ c.

(iii) Если −1 ⩽ b < 0 и −1 ⩽ c < 0, то таких корней нет.

Случай (i) — это случай надкритической граничной диссипации, случай (iii) — пред-
критической, случай (ii) — промежуточный.

Кроме того, мы установили, что стремление неисключительных корней к единич-
ной окружности равномерное относительно корней в том смысле, что для любого
достаточно узкого кольца

K(δ) = {z ∈ C : 1− δ < |z| < 1 + δ}, δ > 0,

и любого достаточно большого N все неисключительные корни pN (z) лежат в этом
кольце. Также мы установили, что для таких N эти корни различны.
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В текущем разделе мы вычисляем неисключительные корни явно, аппроксими-
руя их логарифмы степенными рядами по ϵ=1/N при ϵ→ 0. Логарифм комплекс-
нозначного выражения w обозначается lnw. Его главная ветвь специфицируется
выражением

Lnw = ln |w|+ iArgw, −π < Argw ⩽ π, (9)

где Argw — главное значение аргумента. Кольцо K(δ) называется достаточно узким,
если при b,c ̸=−1 его замыкание не содержит b,c и дуальных к ним точек. Наше
основное утверждение о корнях следующее.

Теорема 1. Для фиксированных b, c < 0 и любого достаточно малого ϵ неис-
ключительные корни многочлена pN (z) представляются в виде

z = eψ, (10)

ψ(ϵ, ϕ) =
∑
n⩾0

ϵnψn(ϵ, ϕ), (11)

где

ψ0 = iϕ, −π < ϕ ⩽ π, (12)

ψn =
1

n!

dn−1Fn(eψ, e2ψ0/ϵ)

dψn−1

∣∣∣
ψ=ψ0

, n ⩾ 1, (13)

F (z, a) =
1

2
Ln

(1 + bz)(1 + cz)

a(z − b)(z − c)
. (14)

Если b,c ̸=−1, то ряд (11) сходится равномерно по ϕ для всех достаточно малых
ϵ и является равномерным асимптотическим разложением своей суммы при ϵ→0.

При b,c ̸=−1 неисключительные корни генерируются значениями

ϕk =



πk

N − 1
в случае (i);

πk

N
− π

2N
в случае (ii);

πk

N + 1
в случае (iii),

k ∈ Z. (15)

Д о к а з а т е л ь с т в о. 1. Мы разбиваем доказательство на четыре части. В пер-
вой, текущей, мы показываем, что уравнение

ψ − ψ0 = ϵF (eψ, e2ψ0/ϵ), (16)

полученное из характеристического уравнения

pN (z) = 0 (17)

преобразованием к переменной ψ, имеет ряд (11) в качестве формального решения.
Заметим, что уравнения (16) и (17) не эквивалентны. Из определения главной

ветви логарифма Ln следует, что (16) влечёт за собой (17), и эквивалентно уравне-
нию (17) только при

−ϵπ < 2ℑ(ψ − ψ0) ⩽ ϵπ. (18)
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Действительно, мы имеем

N(ψ − ψ0) = F (eψ, e2Nψ0) =⇒ e2N(ψ−ψ0) =
(1 + bz)(1 + cz)

e2Nψ0(z − b)(z − c)

⇐⇒ z2N =
(1 + bz)(1 + cz)

(z − b)(z − c)
=⇒ e2N(ψ−ψ0) =

(1 + bz)(1 + cz)

e2Nψ0(z − b)(z − c)

=⇒ Ln e2N(ψ−ψ0) = 2F (eψ, e2Nψ0)

=⇒ Nℜ(ψ − ψ0) + iArg e2Nℑ(ψ−ψ0) = F (eψ, e2Nψ0) =⇒ N(ψ − ψ0) = F (eψ, e2Nψ0),

где последняя импликация справедлива в силу (18).
Чтобы показать, что ряд (11) является решением уравнения (16), мы трактуем

переменную e2ψ0/ϵ как константу. Тогда (16) принимает вид

ψ − ψ0 = ϵF (eψ, a), |a| = 1, (19)

и по форме совпадает с уравнением, рассматриваемым в комбинаторной теореме
Лагранжа [4, p. 150]. Согласно этой теореме решение уравнения (19) представляется
формальным степенным рядом по ϵ

ψ = ψ0 +
∑
n⩾1

ϵn

n!

dn−1Fn(eψ0 , a)

dψn−1
. (20)

В частности, при a=e2ψ0/ϵ этот ряд — решение уравнения (16).

2. Здесь мы устанавливаем равномерную сходимость ряда (20) относительно ϕ
и a. Для оценки членов ряда на единичной окружности мы хотим использовать ин-
тегральную формулу Коши [15]. Однако прямое применение этой формулы невоз-
можно из-за неаналитичности функции F (z,a) в любом кольце K=K(δ). Мы пре-
одолеваем эту трудность следующим образом.

Мы берём кольцо K достаточно узким и для произвольного z0= eψ0 рассматри-
ваем F (z,a) на диске

Dz0 = {z ∈ C : |z − z0| < δ}.

Так как b, c и дуальные к ним точки не принадлежат K, то функция F (z,a) го-
ломорфна на Dz0 за исключением кривых разрыва функции (см. рис. 2), которые
согласно (9) задаются уравнением Argf(z,a)=π, где

f(z, a) =
(1 + bz)(1 + cz)

a(z − b)(z − c)
.

Это уравнение, в свою очередь, эквивалентно условию

ℑf(z, a) = 0, ℜf(z, a) ⩽ 0,

из которого следует, что кривые разрывы суть алгебраические кривые, степень ко-
торых не превышает четыре.
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Рис. 2. Корни многочлена pN (z), кольцо K, диск Dz0 и кривые разрыва функции
F (z,z2N0 ) при b=−1.5, c=−2, N =19 и z0=e2.69i.

Если функция F (z,a) разрывна на Dz0 , мы заменяем её на ветвь F̃ (z,a) мно-
гозначной аналитической функции 1

2 lnf(z,a) такую, что F̃ (z0,a)=F (z0,a). В про-
тивном случае мы полагаем F̃ (z,a) = F (z,a). Кривые разрыва разбивают Dz0 на
связные компоненты, и F̃ (z,a) является аналитическим продолжением F (z,a) из
связной компоненты, содержащей z0, на весь диск. Поэтому если z0 — внутренняя
точка этой компоненты, то функции F̃ (z,a) и F (z,a) вместе с их производными по
z любого порядка совпадают в этой точке. Если же z0 — граничная точка (то есть
точка разрыва), то совпадают соответствующие предельные значения этих функций
и их производных при z→z0 на этой компоненте.

Перейдём теперь к оценке членов ряда (20). Так как функция F̃ (z,a) голоморфна
на диске Dz0 , то функция F̃ (eψ,a) голоморфна на открытом множестве

Uψ0 = {ψ ∈ C : ψ = L(z), z ∈ Dz0},

где L(z) есть ветвь логарифма lnz на Dz0 такая, что L(z0)=ψ0. На границе ∂Uψ0

множества Uψ0
выполняются оценки

|F̃ (z, a)| < m

2
<∞, |ψ − ψ0| >

δ

2
, δ → 0. (21)

Первая следует из неравенства

|F̃ (z, a)| ⩽ sup
z∈K

|F̃ (z, a)| = 1

2
sup
z∈K

(
| ln |f(z, a)||+ | arg f(z, a)|) <∞,

справедливого в силу ограниченности |f(z,a)| на K при b, c ̸=−1. Для обоснования
второй зададим границу диска Dz0 уравнением z= z0+ δe

iθ и представим ∂Uψ0
в

виде

ψ − ψ0 = L(z)− L(z0) = ln
∣∣∣ z
z0

∣∣∣+ i(arg z − arg z0) = ln
∣∣∣ z
z0

∣∣∣+ iArg
z

z0
=

= Ln
z

z0
= Ln

[
1 + δei(θ−ϕ)

]
,

(22)
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где единственное нетривиальное равенство

arg z − arg z0 = Arg
z

z0

верно в силу малости δ, так как тогда arg(z/z0) также мал и не выходит за пределы
интервала (−π,π]. Тогда рассматриваемая оценка следует из (22) и оценки

|Ln[1 + δei(θ−ϕ)]| > δ

2
.

С учётом (21) из интегральной формулы Коши находим

∣∣∣∣ 1n! dn−1Fn(eψ, a)

dψn−1

∣∣∣
ψ=ψ0

∣∣∣∣ =
∣∣∣∣∣∣∣

1

2πn

∫
∂Uψ0

[
F (eψ, a)

ψ − ψ0

]n
dψ

∣∣∣∣∣∣∣ ⩽
⩽

1

2πn

∫
∂Uψ0

∣∣∣∣F (eψ, a)ψ − ψ0

∣∣∣∣n|dψ| < 1

2πn

mn

δn
2π <

[m
δ

]n
,

(23)

то есть для достаточно малых ϵ ряд (20) мажорируется сходящимся геометрическим
рядом, что влечёт за собой равномерную сходимость ряда (20).

3. Оценка ряда (11) геометрическим рядом означает также, что этот ряд явля-
ется равномерным относительно ϕ асимптотическим разложением при ϵ→ 0 своей
суммы. Это следует из (23) и оценок

1

ϵk

∣∣∣∣∣ψ −
k−1∑
n=0

ϵnψn

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=0

ϵnψn+k

∣∣∣∣∣ ⩽
∞∑
n=0

ϵn|ψn+k| =
[m
δ

]k ∞∑
n=0

ϵn
[m
δ

]n
<

< M <∞, ϵ→ 0.

4. В последней части доказательства мы показываем, что для достаточно малых
ϵ корни уравнения (16), определённые рядом (11) и начальными аппроксимация-
ми (15), различны, то есть совпадают по числу с этими аппроксимациями. В силу
импликации (16) ⇒ (17) это означает, что уравнения (10)–(15) определяют все неис-
ключительные корни уравнения (17).

Мы исходим из наблюдения, что для достаточно малых ϵ корни, определённые
рядом (11), суть значения функции ψ(ϵ,ϕ) на интервалах ϕ между соседними точ-
ками разрыва этой функции. Тогда, чтобы показать, что при начальных аппрокси-
мациях (15) эти корни различны, мы должны установить, что разные значения (15)
попадают в разные интервалы непрерывности, или, другими словами, что между
соседними точками (15) лежит по крайней мере одна точка разрыва. Полагаясь на
равномерную асимптотическую сходимость ряда, мы ограничиваемся в этом иссле-
довании первым приближением функции ψ(ϵ,ϕ) (см. рис. 3).

Начнём с характеризации точек разрыва функции ψ1. В соответствии с опреде-
лением Ln это точки, в которых Argf(eiϕ,e2iϕ/ϵ)=π. Мы ассоциируем их с точками
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Рис. 3. График функции Arg[ψ0(ϕ)+ ϵψ1(ϵ,ϕ)] при b=−1.5, c=−2 и N =9. Верти-
кальные линии представляют начальные аппроксимации.

нулевого аргумента ψ1, в которых Argf(eiϕ,e2iϕ/ϵ)=0. В совокупности те и другие
суть в точности решения уравнения

ℑf(eiϕ, e2iϕ/ϵ) = 0 (24)

и различаются только знаком в них функции ℜf(eiϕ,e2iϕ/ϵ). Для первых он отрица-
тельный, для вторых — положительный. В тригонометрической форме (24) эквива-
лентно уравнению

ωN (ϕ) ≡ sin 2ϕ(N+ 1)−A sin 2ϕN +B sin 2ϕ(N− 1) = 0, (25)

A = b2 + c2, B = b2c2,

а знак функции ℜf(eiϕ,e2iϕ/ϵ) совпадает со знаком выражения

cos 2ϕ(N+ 1)−A cos 2ϕN +B cos 2ϕ(N− 1).

Заметим, что из этих формул следует, что ϕ=0, π/2 суть точки нулевого ар-
гумента для всех b,c < 0, исключая случай (ii), в котором ϕ= 0 является точкой
разрыва.

Точки разрыва и точки нулевого аргумента перемежаются. Это следует из тож-
дества

d

dϕ
arg f = −2

ϵ
+

2(b2c2 − 1)[b2c2 − (b2 + c2) cos 2ϕ+ 1]

(b4 − 2b2 cos 2ϕ+ 1)(c4 − 2c2 cos 2ϕ+ 1)
,

которое показывает, что для достаточно малых ϵ функция argf монотонна и, сле-
довательно, значения 0 и π функции Argf чередуются с ростом ϕ.

Теперь мы готовы показать, что между ближайшими начальными аппроксима-
циями (15) лежит по крайней мере одна точка разрыва. Для этого мы уплотним
сетку значений (15), рассматривая вместо неё последовательность ϕk/2, k∈Z. Про-
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стые вычисления показывают, что

ωN (ϕk/2) =


(−1)k sinϕk(2 cosϕk −A) в случае (i);

(−1)k(B − 1) sin
(
ϕk −

π

2N

)
в случае (ii);

(−1)k sinϕk(A− 2B cosϕk) в случае (iii).

(26)

Рассмотрим случай (i). Учитывая симметрию задачи, ограничимся рассмотрени-
ем отрезка ϕ∈ [0,π/2]. На интервале (0,π/2) выражение (26) не обращается в нуль,
а его знак определяется только коэффициентом (−1)k и, следовательно, меняется
на противоположный при переходе k→ k+1. Это означает, что на этом интервале
между соседними точками последовательности ϕk/2, k∈Z, обязательно лежит хотя
бы один корень уравнения (25) и, в силу перемежаемости точек разрыва и точек
нулевого аргумента, между соседними точками (15) лежит хотя бы одна точка раз-
рыва. В граничных интервалах [ϕ0,ϕ1) и (ϕN−2,ϕN−1] также лежат точки разрыва.
Это следует из того, что внутри каждого из этих интервалов лежит корень уравне-
ния (25) и ϕ0 и ϕN−1 — точки нулевого аргумента. Если этот корень является точкой
нулевого аргумента, то в силу перемежаемости между ним и граничной точкой обя-
зательно есть точка разрыва. В противном случае сам этот корень является точкой
разрыва.

Анализ случая (iii) полностью аналогичен анализу случая (i). Случай (ii) при
bc ̸=1 рассматривается также аналогично с той поправкой, что диапазон изменения
ϕ ограничивается отрезком [π/2,π/2+π/2N ] и ϕ=0 является точкой разрыва. При
bc=1 последовательность ϕk/2 является решением уравнения (25), и, следовательно,
между ближайшими точками (15) обязательно лежит точка разрыва.

2. Численный анализ

Сравним результаты вычисления корней многочлена pN (z), полученные с помо-
щью формул (10)–(15) и полученные на основе численных алгоритмов приложения
MAPLE. Для примера исследуем случай (iii) при b,c∈(−1,0). На рис. 4 для выбран-
ных корней многочлена pN (z) и разных значений параметров N , b и c показаны
графики порядка точности аппроксимации этих корней формулами (10)–(15) в за-
висимости от порядка аппроксимации.

Порядок аппроксимации — это порядок n частичной суммы ряда (11), взятой
для аппроксимации. Порядок точности аппроксимации — это величина

nϵ =
ln |z − zϵ|

ln ϵ
, ϵ = 1/N,

где z — точные координаты корня многочлена pN (z), zϵ= zϵ(n) — его приближён-
ное значение, соответствующее порядку аппроксимации n. Выбор корней указан в
описании рисунка. Это корни с наихудшей ϕ=ϕ0, наилучшей ϕ=ϕ(N−1)/2 и про-
межуточной ϕ= ϕ(N+1)/4 точностью аппроксимации. Значения этих корней были
получены программой MAPLE с точностью до 10−40.



242 А. И. Гудименко, А. В. Лихошерстов

Рис. 4. Порядок точности аппроксимации nϵ как функция порядка аппроксимации
n для выбранных корней многочлена pN (z) при различных значениях N , b и c.
Штриховая линия обозначает корень, ближайший к точке z=1, сплошная линия —
к точке с угловой координатой ϕ=ϕ(N−1)/2, линия с длинными штрихами — к точке
с угловой координатой ϕ=ϕ(N+1)/4.

Мы видим, что если b и c достаточно далеки от значения −1, то даже при от-
носительно малых N приближение корней многочлена pN (z), полученное на основе
частичных сумм ряда (11), отлично согласуется с порядком этих сумм. Если же b
и c близки к −1, то корни, близкие к |z|=1, аппроксимируются плохо. Однако при
увеличении N согласование порядка точности аппроксимации с порядком аппрок-
симации восстанавливается.

Представленные наблюдения являются косвенным подтверждением утвержде-
ний, сделанных в теореме предыдущего раздела.
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ABSTRACT

The eigenvalue problem for a dynamic system describing in Schrödinger co-

ordinates the oscillations of a homogeneous harmonic chain with dissipation

at the boundaries is considered. The combinatorial Lagrange formula is used

to obtain a uniform approximation of the eigenvalues for a sufficiently large

number of particles in the chain.
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