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Численный анализ задач с массопереносом
и фазовыми переходами при помощи

нейронных сетей

Задачи, связанные с фазовыми переходами и массообменом, характеризуют-
ся высокой нелинейностью, подвижными границами и резкими изменениями
параметров, что затрудняет их численное решение традиционными методами.
Целью данной работы является исследование возможности применения нового
метода Physics Informed Neural Networks, который использует нейронные сети
для аппроксимации неизвестных, для решения подобных задач. С использо-
ванием данного метода были решены задачи Стефана для одной и двух фаз.
Результаты вычислений продемонстрировали хорошее соответствие как с ана-
литическим решением, так и с результатами, полученными другими числен-
ными методами. Помимо этого был произведен численный анализ задачи дви-
жения газового пузырька, окруженного жидкостью. В дальнейшем развитии
упомянутого метода для решения задач тепломассообмена имеется значитель-
ный потенциал.
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Введение

В последние годы значительно вырос интерес научного сообщества к решению
задач тепломассообмена, зачастую сопряженных c переходами рассматриваемого ве-
щества из одной фазы в другую [1,2]. Ярким примером такого процесса, имеющего
важное практическое применение в медицине и производстве, является лазероин-
дуцированная кавитация [3–5]. Кавитационные пузырьки, образующиеся и схлопы-
вающиеся под воздействием лазерного излучения, сопровождаются образованием
ударных волн и кумулятивных струй, что делает их полезными для прецизионной
очистки, обработки поверхностей и медицинских процедур.

1Институт прикладной математики ДВО РАН, 690922, г. Владивосток, ул. Радио, 7. Электрон-
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Тем не менее известно, что решение подобных задач такими методами, как ме-
тод конечных объемов, метод конечных разностей или метод конечных элементов,
часто вызывает ряд трудностей [6]. В частности, в задачах с фазовыми переходами
для отслеживания фронта перехода требуется построение густой сетки, а также ис-
пользование методов, позволяющих адекватно учитывать передачу тепла или массы
между фазами [7]. Другой не менее важной проблемой является время вычислений
которое в зависимости от задачи, может занимать от нескольких часов до несколь-
ких дней [8]. При этом подобные задачи часто являются неустойчивыми, что еще
больше усугубляет указанную ранее проблему.

В связи с этим возникает проблема поиска нового метода, который позволит пре-
одолеть некоторые недостатки классических методов. В последие годы научное со-
общество активно использует при моделировании физических процессов технологии
искусственного интеллекта. К ним можно отнести и метод Physics Informed Neural
Network (PINN) [9] — метод решения дифференциальных уравнений путем аппрок-
симации неизвестных нейронными сетями. Для этого составляется функционал ка-
чества, отвечающий решению поставленной задачи, и нейронная сеть обучается на
его минимизацию.

Целью текущей работы является исследование возможности использования ме-
тода PINN для численного решения задач тепломассопереноса с фазовыми перехо-
дами. Для этого в работе рассматривается решение таких классических задач, как
задача Стефана для одной и двух фаз, а также задача движения газового пузырь-
ка, окруженного жидкостью, под действием силы тяжести. Решение задач методом
PINN сравнивается с аналитическим решением и с решениями другими численными
методами.

1. Метод PINN

Одной из ключевых особенностей метода PINN является явное включение ма-
тематической модели в процесс обучения нейронной сети посредством оператора
невязки. Пусть û(x, t;ζ) — приближение неизвестного решения некоторой задачи,
заданное нейросетевой моделью с параметрами ζ, где основное уравнение определе-
но через оператор N :

N [u(x, t)] = f(x, t), (x, t) ∈ Ω× [0, T ],

где f(x, t) — правая часть, задающая воздействие внешних сил. В рамках метода
PINN оператор применяется к аппроксимации û, полученной на выходном слое ней-
росети, после чего происходит оценка аппроксимации при помощи невязки R:

R(x, t; ζ) = N [û(x, t; ζ)− f(x, t).

Функция невязки рассчитывается в специальном множестве коллокационных точек
Xr={(xi,ti}Nr

i=1, сгенерированных внутри области Ω× [0,T ].
Помимо этого для метода часто применяют обезразмеривание переменных и

уравнений. Это обусловлено тем, обучение нейронной сети становится более ста-
бильным, когда аргументы и значения функций лежат в сопоставимом диапазоне
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(от 0 до 1 или от –1 до 1). Но, помимо этого, приведение системы к безразмерно-
му виду позволяет получить безразмерные численные характеристики (например,
числа Рейнольдса и Струхаля), отражающие свойства моделируемого процесса.

При использовании метода PINN важную роль играет составление функции по-
терь, отвечающей решению поставленной задачи. В оригинальном методе PINN [9]
все слагаемые этой функции носят вид среднеквадратичной ошибки:

MSE(y, y,X) =
1

N

N∑
i=1

(y(Xi)− y(Xi))
2,

где y, y — некоторые функции, X — набор данных, N — число элементов в наборе
данных.

В общем случае сама функция потерь J имеет вид

J = Jr + JBC + JIC + Jdata,

где Jr — слагаемое для невязок дифференциальных уравнений, JBC — слагаемое
для граничных условий, Jdata — слагаемое для начальных условий.

Однако в такой постановке метод имеет ряд серьезных недостатков – поскольку
слагаемые функции J могут иметь разный порядок, их дисбаланс может привести к
неспособности решить самую простую задачу путем либо расхождения метода, либо
схождения к тривиальному решению. Для того чтобы эту задачу решить, в [10]
предложен алгоритм, модифицирующий вид слагаемых следующим образом:

MSE(y, y,X, η) =
1

N

N∑
i=1

(ηi|y(Xi)− y(Xi)|)2,

где η – это набор весовых коэффициентов для каждой точки набора данных. Указан-
ные коэффициенты обучаются вместе с нейронной сетью путем оптимизационного
алгоритма, основанного на градиентном спуске:

ηn+1 = ηn + β
∂J

∂ηn
,

где n — номер итерации, β — шаг обучения.
Такой подход позволяет не подбирать весовые коэффициенты для слагаемых

вручную, а также значительно увеличивает сходимость метода при решении самых
разных задач.

Для того чтобы можно было обучить нейронную сеть, необходимо сгенерировать
набор точек, называемый также обучающим датасетом либо точками коллокации,
который в дальнейшем используется для расчета функции потерь. В текущей ра-
боте используется генерация точек при помощи последовательностей Соболя [11],
поскольку такой подход приводит к ускорению работы метода PINN [12]. Пример
обучающей выборки, сгенерированной последовательностями Соболя, представлен
на рисунке 1.

Объем обучающей выборки оказывает существенное влияние на качество рабо-
ты метода. Как и в других методах машинного обучения, при генерации данных
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Рис. 1. Пример набора коллокационных точек, сгенерированный при помощи после-
довательностей Соболя.

очень важно избежать феноменов как недообучения (невозможности аппроксима-
ции зависимостей между данным в силу недостатка объема данных), так и пере-
обучения (запоминания зависимостей в силу избытка данных). Стоит отметить, что
для каждой отдельной задачи оптимальное количество точек может отличаться, а
алгоритмы с адаптивной генерацией точек на текущий момент времени недостаточ-
но развиты для стабильной работы метода PINN. В силу этого количество точек
датасета в текущей работе было выбрано эмпирически следующим образом.

1) Для одномерной нестационарной задачи объем обучающей выборки составляет

Nr = 8 · 103, Nb = 4 · 102, N0 = 102, N = Nr +Nb +N0 = 8.5 · 103,

где Nr — количество точек для расчета невязки уравнений, Nb — количество точек
для расчета граничных условий, N0 — количество точек для расчета начальных
условий, N — общий объем датасета.

2) Для двумерной нестационарной задачи объем обучающей выборки составляет

Nr = 6 · 104, Nb = 3.2 · 104, N0 = 8 · 103, N = 105.

Другой важной модификацией метода, используемой в текущей работе, является
метод Фурье-кодирования признаков [13]. Метод заключается в проекции входных
параметров на пространство тригонометрических функций разных аргументов, что
позволяет нейронной сети при обучении лучше учитывать сложные зависимости
приближаемых неизвестных функций от пространственно-временных переменных.

Выглядит преобразование следующим образом:

γ(x) = [cos(2πBx), sin(2πBx)]T ,
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где x — входная переменная, γ(x) — проекция входной переменной, B∈Rm×d — мат-
рица коэффициентов, генерируемая случайной выборкой из N (µ, σ2), где σ2 может
быть использован как гиперпараметр метода.

В качестве нейронной сети для аппроксимации неизвестных используется обыч-
ная полносвязная нейронная сеть с Фурье-кодированием входных признаков. Гипер-
параметры нейронных сетей, используемых в качестве аппроксимации неизвестных
функций, являются следующими:

1) архитектура сети состоит из слоя Фурье-кодирования признаков с 16 нейрона-
ми, 4 скрытых полносвязных слоев с функциями активации th(x)=(ex−e−x)/(ex+

+e−x) и выходного слоя с одним нейроном и линейной функцией активации;
2) оптимизатор Adam с шагом обучения lr=2 ·10−4;
3) обучение останавливается либо по достижении заданного количества эпох

M =5 ·104, либо по прекращении изменения функции потерь в течение 1000 эпох;
В этой работе для аппроксимации каждой неизвестной используется отдельная

нейронная сеть. По сравнению с использованием одной масштабной нейронной сети
для аппроксимации всех неизвестных такой подход требует меньше вычислительных
ресурсов, работает быстрее и приводит к лучшей сходимости за счет того, что у каж-
дой неизвестной функции своя зависимость от входных пространственно-временных
характеристик. Типичная архитектура нейронной сети схематично представлена на
рисунке 2.

Рис. 2. Схематичное изображение архитектуры нейронной сети.

Реализация метода осуществлялась на языке программирования Python при по-
мощи библиотеки Tensorflow [14]. При расчете численных экспериментов использо-
вался персональный ноутбук со следующими характеристиками: графический про-
цессор NVIDIA GeForce RTX 3070 Ti Laptop, центральный процессор Intel Core i5-
12700H, 16 GB оперативной памяти.
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2. Однофазная задача Стефана

Задача Стефана со свободной границей для одной фазы описывается уравнением
теплопроводности со следующими условиями:

∂θ

∂t
− λ

∂2θ

∂x2
= 0, t ∈ [0, T ], x ∈ [0, s(t)], (1)

θ|t=0 = θ0, s|t=0 = s0, (2)

θ|x=0 = θ1, θ(s(t), t) = θm, ρH
ds

dt
= k

∂θ

∂x
|x=s(t). (3)

Здесь θ — температура, [К], s(t) — положение подвижной границы между фазами,
[м], λ — коэффициент температуропроводности,

[
м2

/
с], k — коэффициент теплопро-

водности, [Вт/м ·K], H — скрытая теплота, [Дж].
Для решения такой задачи с учетом особенностей метода, указанных в предыду-

щем разделе, хорошо подойдет метод выпрямления фронта. Суть названного под-
хода заключается во введении новой переменной

ξ =
x

s(t)
.

В функции новых переменных ψ(ξ,t)=θ(x,t) система (1)–(3) примет вид

∂ψ

∂t
− ξ

s

∂s

∂t

∂ψ

∂ξ
− 1

s2
∂2ψ

∂ξ2
= 0, ξ ∈ [0, 1], t ∈ [0, T ] (4)

ψ(ξ, 0) = θ0(ξs(0)), s(0) = s0, (5)

ψ(0, t) = θ1, ψ(1, t) = θm,
1

s

∂ψ

∂ξ
|ξ=1 = −λds

dt
. (6)

Для верификации метода рассмотрим решение задачи (1)–(3) со следующими
параметрами:

s0 = 0, θm = θ0 = 1, θ1 = ekt, θ2 = ekt−s, T = 1, k = 1.

Существует аналитическое решение такой задачи, которое имеет вид

s(t) = kt, θ(x, t) = ekt−x

Численное решение методом PINN осуществлялось в постановке (4)–(6), где функ-
ция температуры θ(ξ,t) и функция положения границы раздела фаз s(t) были ап-
проксимированы отдельными нейронными сетями. Полученное решение было пре-
образовано обратно к исходным переменным и представлено на рисунке 3.

Результаты говорят о высокой точности метода PINN при решении задачи со
свободной границей.

Время решения задачи (1)–(3) методом PINN составило 5 минут.
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Рис. 3. Сравнение решения задачи Стефана для одной фазы методом PINN с ана-
литическим решением.

3. Двухфазная задача Стефана

В случае двухфазной задачи Стефана будем рассматривать уравнение теплопро-
водности в виде [1]

∂θ

∂t

(
1− 1

Ste
∂ϕ

∂t

)
− Fo(ϕ)

∂2θ

∂x2
= 0, x ∈ [0, 1], t ∈ [0, 1]. (7)

Здесь [Дж/кг ·К], Ste=H/cp,lθs — число Стефана, cp — удельная теплоемкость, H —
скрытая теплота плавления, [Дж/кг], ϕ — функция фазы, зависящая от температу-
ры, а нелинейное слагаемое ∂ϕ

∂t учитывает фазовый переход:

ϕ =
1

2

(
1 + th

(
θm − θ

δ

))
,

где δ — параметр регуляризации. Число Фурье, Fo, также зависит от фазы:

Fo(ϕ) = (1− ϕ)
klts

cp,lρlL2
+ ϕ

ksts
cp,sρsL2

В таком виде функция ϕ может быть интерпретирована как объемная доля твер-
дой фазы, а скорость перехода одной фазы в другую и ширина зоны плавления
регулируются параметром δ. Подход хорошо работает при использовании метода,
основанного на градиентном спуске, которым является метод PINN, в силу исполь-
зования функции гиперболического тангенса, являющейся достаточно гладкой. При
этом заметим, что использование слишком малого параметра регуляризации δ мо-
жет привести к так называемому “градиентному взрыву” — ситуации, когда решение
разрушается из-за наличия слишком больших градиентов в некоторой его зоне.

Уравнение (7) дополняется начальными и граничными условиями:

θ|t=0 = θ0, θ|x=0 = θ1, θ|x=1 = θ2.
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Рассмотрим решение численного эксперимента со следующими параметрами, пред-
ставленными в размерности международной системы единиц, при этом температу-
ра — в градусах Цельсия, ◦C:

L = 0.01, ts = 10, δ = 0.5, ρl = 1000, ρs = 917, θs = 60,

kl = 0.6, ks = 2.2, cp,l = 4180, cp,s = 2100, H = 3.34 · 105,

θ0(x) =

{
25, x ⩽ 0.3L,

−7.5, x > 0.3L,
, θ1 = 25, θ2 = 7.5.

Для сравнения результатов использовался метод конечных разностей в поста-
новке задачи с энтальпией. Результаты расчетов представлены на рисунке 4, где
сплошной линией представлено решением методом PINN, звездами обозначено ре-
шение методом конечных разностей.

Стоит отметить, что, несмотря на некоторое несоответствие в полученных ре-
зультатах, метод PINN демонстрирует более физичное поведение — в постановке,
где левая граница нагрета больше правой, фронт смены фаз будет идти слева на-
право, в то время как в решении, полученном методом конечных разностей, такого
поведения не наблюдается.

Подход с использованием функции ϕ при использовании метода PINN доста-
точно прост и позволяет за счет нелинейности избежать введения дополнительных
неизвестных и усложнения системы. Подход может быть распространен и на задачи
Стефана в двумерном и трехмерном случаях [1].

Стоит отметить, что скорости расчета двухфазной задачи Стефана методом ко-
нечных разностей и методом PINN сопоставимы друг с другом и составляют порядка
10 минут.

Рис. 4. Сравнение решения задачи Стефана для двух фаз с решением, полученным
методом конечных разностей.
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4. Течение газового пузырька в вязкой жидкости

Движение вязкой жидкости под действием силы тяжести в двумерной области Ω
описывается уравнениями Навье –Стокса:

∇ · u = 0.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u+ ρg + Fs, x ∈ Ω× [0, T ].

Здесь u=(u,v) — вектор-функция скорости, [м/с], p — давление, [Па], µ — вязкость,
[Па ·с], g=(0,−g) — вектор ускорения свободного падения,

[
м/с2

]
, Fs — объемная

сила.
Для того чтобы смоделировать движение двухфазной жидкости, прибегнем к

методу объема жидкости [15], который использует функцию объемной доли фракции
для разделения фаз:

ρ(αg) = (1− αg)ρl + αgρg, µ(αg) = (1− αg)µl + αgµg.

Для корректного расчета функции объемной доли газовой фазы добавляется урав-
нение адвекции:

∂αg

∂t
+ u · ∇αg = 0. (8)

Учет разницы давлений на границе раздела фаз осуществляется при помощи
метода Continuum Surface Force [16]:

Fs = σκ∇αg, (9)

где σ — коэффициент поверхностного натяжения, κ=−∇·(∇αg/|∇αg|)
При решении задачи также будем использовать обезразмеривание, которое ча-

стично поможет избежать проблемы со сходимостью в методе PINN, появляющейся
в силу разницы соотношений физических характеристик разных фаз.

В безразмерном виде система уравнений (8)–(9) примет вид

∇ · u = 0, (10)
∂u

∂t
+ Sh(u · ∇)u+

Sh

ρ(αg)
∇p−

− Sh

Re(αg)
∇2u− Sh

Fr2
· e− Sh

We(αg)
κ∇αg = 0, x ∈ Ω× [0, 1],

(11)

∂αg

∂t
+ Shu · ∇αg = 0, (12)

где Re(αg) — число Рейнольдса, We(αg) — число Вебера, Sh — число Струхаля,
Fr — число Фруда, определяемые следующим образом:

Re =
usρL

µ
, We =

ρLu2s
σ

, Sh =
Tus
xs

, F r =
us√
gL

.

Здесь us — относительное значение скорости.
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Система (10)–(12) дополняется начальными и граничными условиями [17]:

u|t=0 = vt=0 = 0, αg|t=0 =

{
1,

√
(x− x0)2 + (y − y0)2 ⩽ r0,

0,
√

(x− x0)2 + (y − y0)2 > r0,
,

Γ1 : u = 0, v = 0; Γ2 : u = 0,
∂v

∂n
= 0,

где Γ=∂Ω=Γ1∪Γ2, Γ1, Γ2 — границы расчетной области. Геометрия и граничные
условия схематично изображены на рисунке 5 с размерами области, имеющими раз-
мерность [м].

Для того чтобы аппроксимировать функцию объемной доли нейронной сетью,
ограничив ее в пределах [0,1], используем на выходном слое логистическую функцию
активации в качестве регуляризации. Для того чтобы избежать значений, означа-
ющих смешение фаз вне зоны их раздела, будем использовать следующую кусочно
непрерывную аппроксимацию:

α̂(x) =


0, если S(Y ) < 0.1,

S (Y (x;W )) , если 0.1 ⩽ S(Y ) ⩽ 0.9,

1, если S(Y ) > 0.9,

Рис. 5. Изображение геометрии и граничных условий.
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где α̂(x)∈ [0,1] — аппроксимация функции объемной доли, Y (x;W ) — выход нейрон-
ной сети до активации, а S(z)=1/(1+e−z) — логистическая функция.

В качестве численного эксперимента рассматривается эталонный пример [17] с
параметрами задачи

ρl = 103
[ м
кг3

]
, ρg = 102

[ м
кг3

]
, µl = 10 [Па · с] , µg = 1 [Па · с] , g = 0.98

[ м
с2

]
.

Стоит отметить, что параметры, используемые при расчете эталонного приме-
ра, являются нефизичными и используются только для верификации сходимости
разных методов при решении данной задачи, а не для моделирования реального
физического процесса.

Полученные в результате расчета численного эксперимента вертикальная и го-
ризонтальная компоненты скорости u и v представлены на рисунке 6, давление p —
на рисунке 7, функция объемной доли газовой фазы αg — на рисунке 8. Значения
приведены в финальный момент времени t=3 с.

По представленным результатам видно некоторое несоответствие метода PINN c
высокоточным решением, полученным методом конечных элементов. Несмотря на
это, решение, полученное методом PINN, смогло охватить качественное поведение
пузырька и окружающей его жидкости, а именно поднятие под действием вытал-
кивающей силы, а также деформацию под действием силы поверхностного трения
на границе между двумя фазами. Время расчета численного эксперимента состави-
ло 3 часа, что сопоставимо со временем расчета классическим методом на мелкой
сетке [17].

Рис. 6. Горизонтальная и вертикальная компоненты вектор-функции скорости в мо-
мент времени t = 3 с, полученные в ходе решения задачи (10)–(12) методом PINN.
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Рис. 7. Давление в момент времени t = 3 с, полученное в ходе решения задачи (10)–
(12) методом PINN.

Рис. 8. Функция объемной доли газовой фазы в момент времени t = 3 с, полученная
в ходе решения задачи (10)–(12) методом PINN в сравнении с решением, полученным
методом конечных элементов с использованием метода поверхности уровня [17].

5. Результаты и обсуждение

В работе была рассмотрена возможность решения задач с массопереносом и сме-
ной фаз при помощи метода PINN, основанного на нейронных сетях. Результат пока-
зал, что метод на ряде тестовых задач, таких как задача Стефана, хорошо повторяет
результаты классических алгоритмов.

В то же время для более сложных задач, таких как задача движения пузырька,
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результат, полученный при помощи PINN, показывает общее соответствие в поведе-
нии решения, но на текущем этапе дает значимую погрешность.

Стоит отметить, что скорость вычислений на основе усовершенствованного ме-
тода PINN сильно возросла по сравнению с оригинальным методом и уже стала
сопоставима со временем расчета классических алгоритмов. Однако при расчете
сложных нелинейных задач, требующих построения мелкой сетки и использования
малых шагов по времени, метод PINN в перспективе может дать выигрыш во вре-
мени в разы.

Одним из направлений дальнейшего развития работы может стать подход с ис-
пользованием нейронных сетей с двумя выходными значениями для каждой из фаз.
Например, для системы (10)–(12)

u = (1− αg)ul + αgug, p = (1− αg)pl + αgpg

Исследование подобного подхода может прояснить влияние роли значений ап-
проксимируемых функций, имеющих разный порядок для каждой из фаз, на сходи-
мость метода.

Другим направлением развития может стать использование метода функции
уровня [18], который является распространенным при решении подобного рода за-
дач.
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ABSTRACT

Problems related to phase change and mass transfer are characterized by

high nonlinearity, moving boundaries and sharp changes in parameters,

which complicates their numerical solution by traditional methods. The

aim of this work is to study the possibility of using a new method Physics

Informed Neural Networks, which uses neural networks to approximate un-

knowns, to solve such problems. The method was applied to solve Stefan

problems for one and two phases, as well as to numerically analyze the

problem of the motion of a gas bubble surrounded by a liquid. The method

demonstrated good agreement with other solutions for Stefan problems and

made it possible to simulate the bubble motion, although with some errors.

There is significant potential for further development of this method for

solving heat and mass transfer problems.

Key words: Phase change, mass transfer, Stefan problem, neural networks.
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