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Рэлея – Тейлора с использованием

многофазной модели

В работе представлено исследование применимости многофазной модели типа
Баера –Нунциато к исследованию процесса развития неустойчивости Рэлея –
Тейлора в металлах, находящихся в экстремальном «псевдожидком» состоя-
нии. Рассмотрена модельная задача с синусоидальным возмущением контакт-
ной границы между металлами. Полученные результаты показывают соответ-
ствие теоретическим оценкам. Проведено исследование влияния сжимаемости
на развитие процесса. Полученные результаты свидетельствуют о наличии вли-
яния сжимаемости фаз не только на сам процесс, но и на особенности его чис-
ленного моделирования.
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Введение

Математическое моделирование процесса сварки взрывом является активно раз-
вивающейся и актуальной областью исследований. Специфика быстропротекающих
высокоэнергетических явлений, протекающих при сварке взрывом, затрудняет про-
ведение детальных натурных экспериментов. Среди работ, уделяющих внимание
моделированию этого процесса, можно отметить [1–4]. В этих работах, как и во
многих других, основное внимание уделяется упруго-пластическим процессам внут-
ри металлических пластин, таким как образование зоны упрочнения, деформация
пластин, их разрушение, формирование кумулятивной струи металлических ча-
стиц и тому подобных. Такая специфика исследуемых явлений диктует и опреде-
лённый набор математических моделей и численных методов. Большое внимание
уделяется моделям упруго-пластической сплошной среды, Лагранжевым методам,
ALE [4], SPH [4, 5]. Используются и коммерческие программные пакеты, такие как
LS-DYNA [6,7].
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С другой стороны, в задаче сварки взрывом естественным образом возника-
ет необходимость моделирования как минимум двух разнородных материалов, что
обусловливает возможность применения моделей многофазной сплошной среды. В
таких работах, как [8] и [9], было описано применение многофазной модели Бае-
ра –Нунциато к моделированию процесса высокоскоростного соударения пластин,
и были получены данные, свидетельствующие о возможности успешного примене-
ния гидродинамического описания для моделирования начальной стадии процесса
сварки взрывом. Выбор именно этой модели многофазной среды связан с её выда-
ющимися математическими свойствами, а именно практически безусловной гипер-
боличностью системы. Помимо этого, важным фактором является приспособлен-
ность модели для численного исследования процессов горения и взрыва гетероген-
ных взрывчатых веществ [10]. Настоящая работа ставит перед собой цель расши-
рить представленный в работе [8] одномерный трёхфазный алгоритм до двумерного
и исследовать его применимость к задаче развития неустойчивости Рэлея –Тейлора
(РТН) контактной границы между металлами, находящимися в «псевдожидком» со-
стоянии вследствие экстремальных давлений, возникающих в процессе соударения
пластин. В работе будет использоваться именно трёхфазный алгоритм, несмотря
на двухфазность исследуемой задачи. Причина такого несоответствия заключает-
ся в перспективе использования разработанного алгоритма для исследования более
сложных задач, связанных со сваркой взрывом, где пренебречь газовой фазой уже
нельзя. Задача о развитии РТН выбрана не случайно, а по причине того, что экспе-
риментальные данные и теоретические выкладки, как показано в работе [11], сви-
детельствуют о том, что это явление вносит существенный вклад в наблюдаемую
картину течения в области контакта пластин. Эта задача представляет интерес как
сама по себе, в силу редкости рассматриваемой постановки, так и как фундамент
будущих исследований в области изучения газодинамических процессов между по-
верхностями сталкивающихся пластин.

Структура работы выглядит следующим образом. В начале в Главе 1 приведе-
ны используемая двумерная трехфазная математическая модель и ее физическое
описание. Затем в Главе 2 описан реализованный численный метод, основанный
на конечно-объемном Римановском решателе HLLC. Глава 3 содержит постановку
модельной задачи для исследования применимости многофазной модели для моде-
лирования процесса развития РТН в металлах в «псевдожидком» состоянии; ука-
заны время моделирования и использованные расчетные сетки. Наконец, в Главе 4
продемонстрированы основные результаты численного моделирования. Проделано
сравнение полученных данных с теоретическими оценками роста амплитуды возму-
щения во времени на линейной стадии РТН и асимптотических скоростей пузыря
и струи на нелинейной стадии РТН. В Главе 4 подведены основные итоги иссле-
дования, приведены выводы и обозначены перспективы дальнейшей работы в этом
направлении.
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1. Математическая модель

Двумерная трёхфазная математическая модель основана на системе уравнений
Баера –Нунциато [12]:

Ut + Fx(U) +Gy(U) = H(U, (αk)x) + I(U, (αk)y) + Sv(U) + Sp(U),
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−ũ(α2)x

0
p̃(α2)x

0
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3∑
k=1

αkρkvk/

3∑
k=1

αkρk.

Здесь U — вектор консервативных переменных; F и G — векторы потоков в x

и y направлениях соответственно, H и I — «неконсервативные» члены, также на-
зываемые сопловыми членами; Sv и Sp – векторы, содержащие члены, связанные
с релаксацией скоростей и давлений. При записи системы уравнений использова-
ны стандартные обозначения: t — время, x и y — пространственные координаты,
α — объемная доля, ρ — истинная плотность, u и v — компоненты скорости в x и
y направлениях, p — давление, E — полная энергия. Скорости ũ и ṽ, давление p̃ —
параметры на межфазной границе. Нижними индексами k=1,2,3 обозначается при-
надлежность величины к первой, второй и третьей фазам соответственно, а нижние
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индексы t, x, y соответствуют частным производным величин по времени или одной
из пространственных координат.

В качестве уравнения состояния (УРС) для каждой из фаз используется дву-
членное уравнение состояния, аналогичное приведённому в работе [8].

Параметры µ и λ отвечают за релаксацию давления и скорости соответственно.
В рамках задач пористых сред эти параметры имеют конечные значения, связанные
с акустическими масштабами для релаксации давления и межфазным трением для
релаксации скорости. Однако в рамках настоящей работы можно сделать упрощаю-
щее предположение о мгновенном установлении межфазного равновесия скоростей
и давлений в силу отсутствия смешивания фаз: µ−→+∞, λ−→+∞. В таком случае
будет выполняться следующее соотношение между скоростями и давлениями фаз:

p1 = p2 = p3,

u1 = u2 = u3,

v1 = v2 = v3.

2. Численный метод

2.1. Схема расщепления по физическим процессам

Вычислительный алгоритм основан на принципе расщепления по физическим
процессам:

Un+1
i,j = LpLvLhU

n
i,j , (1)

где Un
i,j — вектор консервативных переменных численного решения в ячейке i,j на

временном слое n.
На каждом шаге по времени первым производится гиперболический шаг, соот-

ветствующий в формуле (1) оператору Lh. Этот шаг состоит из решения исходной
системы уравнений без векторов релаксации Sv и Sp. Затем полученное решение ис-
пользуется как начальные данные для оператора релаксации скорости Lv. На этом
этапе скорости всех фаз выравниваются, а также корректируются внутренние энер-
гии фаз. После этого аналогично применяется оператор релаксации давления Lp.
В результате действия этого оператора давления фаз выравниваются, изменяются
объёмные доли, плотности и внутренние энергии фаз. Полученный после этого этапа
вектор переменных является итоговым на каждом шаге по времени.

2.2. Гиперболический шаг

Для решения системы на гиперболическом шаге целесообразно использовать
конечно-объёмный метод с подходящим Римановским решателем. Быстропротека-
ющий высокоэнергетический характер процессов в области применения модели, в
том числе и в области задачи исследования процессов сварки взрывом, определяет
необходимость в консервативном методе, хорошо разрешающем волновые процессы.
В настоящей работе используется HLLC-подобный метод, основанный на методе,
использованном в работе [8] и модифицированный для трёхмерного двухфазного
случая.
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Для решения исходная система разбивается на две части: уравнения для объ-
емной доли и оставшуюся уменьшенную подсистему. Оставшаяся подсистема для
вектора консервативных переменных U может быть переписана в следующем виде:

ut + fx(u) + gy(u) = h(u, (αk)x) + i(u, (αk)y),
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.

Аппроксимация уравнений переноса объемной доли в соответствии с работой [13]
выглядит следующим образом:
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Здесь S+ и S− — сигнальные скорости, S∗ — скорость контактного разрыва, c —
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скорость звука, определяемые как

S+
i+1/2,j = max

k=1,2,3

(
uk

n
i,j + ck

n
i,j , uk

n
i+1,j + ck

n
i+1,j

)
,

S−
i+1/2,j = min

k=1,2,3

(
uk

n
i,j − ck

n
i,j , uk

n
i+1,j − ck

n
i+1,j

)
,

S∗
i+1/2,j =

p̃ni+1,j − p̃ni,j + ρ̃ni,j ũ
n
i,j

(
S−
i+1/2,j − ũn

i,j

)
− ρ̃ni+1,j ũ

n
i+1,j

(
S+
i+1/2,j − ũn

i+1,j

)
ρ̃ni,j

(
S−
i+1/2,j − ũn

i,j

)
− ρ̃ni+1,j

(
S+
i+1/2,j − ũn

i+1,j

) ,

ρ̃ni,j =
∑

k=1,2,3

αk
n
i,jρk

n
i,j , ck

n
i,j =

√
γk

pkni,j + P0k

ρkni,j
, k = 1, 2, 3.

Конечно-объемная аппроксимация большой подсистемы записывается в виде(
un+1
i,j

)
h
= un

i,j −
∆tn

∆x

[
fHLLC
i+1/2,j

(
un
i,j ,u

n
i+1,j

)
− fHLLC

i−1/2,j

(
un
i−1,j ,u

n
i,j

)]
−

−∆tn

∆y

[
gHLLC
i,j+1/2

(
un
i,j ,u

n
i,j+1

)
− gHLLC

i,j−1/2

(
un
i,j−1,u

n
i,j

)]
+

+h
(
un
i,j , (∆xαk)

n
i,j

)
+ i

(
un
i,j , (∆yαk)

n
i,j

)
.

Численная аппроксимация потока f через грани ячеек вычисляется в соответ-
ствии с подходом HLLC. Для этого введём следующие обозначения:

fHLLC
i+1/2,j

(
un
i,j ,u

n
i+1,j

)
=

Φ1
n
i+1/2,j

Φ2
n
i+1/2,j

Φ3
n
i+1/2,j

 , un
i,j =

W1
n
i,j

W2
n
i,j

W3
n
i,j

 .

Тогда поток через грань ячейки

Φk
n
i+1/2,j =



Φk
n
i,j , S−

i+1/2,j ⩾ 0,

Φk
n
i,j + S−

i+1/2,j

(
Q−

k i+1/2,j
−Wk

n
i,j

)
, S−

i+1/2,j < 0 ⩽ S∗
i+1/2,j ,

Φk
n
i+1,j + S+

i+1/2,j

(
Q+

k i+1/2,j
−Wk

n
i+1,j

)
, S∗

i+1/2,j < 0 ⩽ S+
i+1/2,j ,

Φk
n
i+1,j , S+

i+1/2,j ⩾ 0.

Здесь значения переменных слева и справа от контактного разрыва Q−
k ,Q

+
k вы-

числяются следующим образом:

Q−
k i+1/2,j

= C−
k ·


1

S∗
i+1/2,j

vk
n
i,j

pk
n
i,j

ρk
n
i,j

+
(
S∗
i+1/2,j − uk

n
i,j

)(
S∗
i+1/2,j +

pk
n
i,j

ρk
n
i,j(S

−
i+1/2,j

−uk
n
i,j)

)
 ,

Q+
k i+1/2,j

= C+
k ·


1

S∗
i+1/2,j

vk
n
i+1,j

pk
n
i+1,j

ρk
n
i+1,j

+
(
S∗
i+1/2,j − uk

n
i+1,j

)(
S∗
i+1/2,j +

pk
n
i+1,j

ρk
n
i+1,j(S

+
i+1/2,j

−uk
n
i+1,j)

)
 ,
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C−
k =

αk
n
i,jρk

n
i,j

(
S−
i+1/2,j − uk

n
i,j

)
S−
i+1/2,j − S∗

i+1/2,j

, C+
k =

αk
n
i+1,jρk

n
i+1,j

(
S+
i+1/2,j − uk

n
i+1,j

)
S+
i+1/2,j − S∗

i+1/2,j

.

Производные объёмных долей по координате x в сопловых членах аппроксимиру-
ются в соответствии с выбранной аппроксимацией уравнения переноса объёмной
доли:

(∆xαk)
n
i,j =

1

∆x

(
δk

n
i+1/2,j − δk

n
i−1/2,j

)
,

δk
n
i+1/2,j =

{
αk

n
i,j , S∗

i+1/2,j ⩾ 0

αk
n
i+1,j , S∗

i+1/2,j < 0
, δk

n
i−1/2,j =

{
αk

n
i−1,j , S∗

i−1/2,j ⩾ 0

αk
n
i,j , S∗

i−1/2,j < 0
.

2.3. Релаксация скорости

Из исходной системы следует, что на шаге релаксации скорости необходимо ре-
шить в каждой ячейке следующую систему обыкновенных дифференциальных урав-
нений (СОДУ) для каждой из фаз:

Ut = Sv(U) ⇒



∂αk

∂t = 0,
∂(αkρk)

∂t = 0,
∂(αkρkuk)

∂t = λ(um − uk),
∂(αkρkvk)

∂t = λ(vm − vk),
∂(αkρkEk)

∂t = λṽ(vm − vk) + λũ(um − uk),

k = 1, 2, 3, m ̸= k, (2)

где m — любой индекс, не равный k.
Принимая во внимание учтённое ранее предположение о стремлении λ к беско-

нечности, можно получить выражение для равновесной скорости фаз:

(u)v =

3∑
k=1

(αkρkuk)h/

3∑
k=1

(αkρk)h, (v)v =

3∑
k=1

(αkρkvk)h/

3∑
k=1

(αkρk)h.

Здесь нижний индекс h соответствует значениям переменных после гиперболиче-
ского шага, v — после шага релаксации скоростей. В соответствии с системой (2)
процедура релаксации скорости приводит к изменению не только скоростей фаз,
но и их внутренних энергий. Для поправки к энергии можно несложным образом
получить следующее выражение:

(ek)v = (ek)h +
1

2
((u)v − (uk)h)

2 +
1

2
((v)v − (vk)h)

2.
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2.4. Релаксация давления

Как и для релаксации скоростей, в каждой ячейке для каждой фазы возникает
необходимость решения следующей СОДУ:

Ut = Sp(U) ⇒



∂αk

∂t = µ(pk − pm),
∂(αkρk)

∂t = 0,
∂(αkρkuk)

∂t = 0,
∂(αkρkvk)

∂t = 0,
∂(αkρkEk)

∂t = µp̃(pk − pm),

k = 1, 2, 3, m ̸= k. (3)

Принимая предположение об устремлении параметра µ к бесконечности, систе-
му (3) можно упростить, приведя её к системе нелинейных алгебраических уравне-
ний. Основываясь на выкладках, приведённых в работах [8, 14, 15], можно записать
итоговую систему уравнений относительно переменных (ρ1)p,(ρ2)p,(ρ3)p,(p)p:

2(ρ1)p(ρ1)v

(
(p)p+γ1P01

(ρ1)p(γ1−1) −
(p1)v+γ1P01

(ρ1)v(γ1−1)

)
− ((p)p − (p̃)v) ((ρ1)p − (ρ1)v) = 0,

2(ρ2)p(ρ2)v

(
(p)p+γ2P02

(ρ2)p(γ2−1) −
(p2)v+γ2P02

(ρ2)v(γ2−1)

)
− ((p)p − (p̃)v)((ρ2)p − (ρ2)v) = 0,

2(ρ3)p(ρ3)v

(
(p)p+γ3P03

(ρ3)p(γ3−1) −
(p3)v+γ3P03

(ρ3)v(γ3−1)

)
− ((p)p − (p̃)v)((ρ1)p − (ρ1)v) = 0,

3∑
k=1

( mk

(ρk)p
)− 1 = 0, mk = (αk)v(ρk)v.

Здесь нижний индекс p соответствует величинам после релаксации давлений. Полу-
ченная система может быть записана в векторном виде как

F(X) = 0, X =
[
(ρ1)p (ρ2)p (ρ3)p (p)p

]T
,

F(X) =



2(ρ1)p(ρ1)v

(
(p)p+γ1P01

(ρ1)p(γ1−1) −
(p1)v+γ1P01

(ρ1)v(γ1−1)

)
− ((p)p − (p̃)v)((ρ1)p − (ρ1)v)

2(ρ2)p(ρ2)v

(
(p)p+γ2P02

(ρ2)p(γ2−1) −
(p2)v+γ2P02

(ρ2)v(γ2−1)

)
− ((p)p − (p̃)v)((ρ2)p − (ρ2)v)

2(ρ3)p(ρ3)v

(
(p)p+γ3P03

(ρ3)p(γ3−1) −
(p3)v+γ3P03

(ρ3)v(γ3−1)

)
− ((p)p − (p̃)v)((ρ1)p − (ρ3)v)

3∑
k=1

(
mk

(ρk)p

)
− 1


.

Решение нелинейной системы ищется методом Ньютона

X(s+1) = X(s) − J(X(s))F(X(s)),

где матрица Якоби системы

J(X) =
∂F

∂X
=


A1 0 0 B1

0 A2 0 B2

0 0 A3 B3

−m1/(ρ1)
2
p −m2/(ρ2)

2
p −m3/(ρ3)

2
p 0

 ,

Ak = −2 · (pk)v + γkP0k

γk − 1
− ((p)p + (p̃)v), Bk =

2(ρk)v
γk − 1

− ((ρk)p + (ρk)v), k = 1, 2, 3.
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Здесь s — текущий номер итерации. Максимальное количество итераций для расчета
в работе взято равным 100, однако на практике достаточно нескольких итераций для
достижения требуемой точности.

3. Постановка задачи

Исследуется двумерная модельная задача, состоящая из двух «псевдожидко-
стей», находящихся в поле действия однородной массовой силы с g=2·109м/с2, соот-
ветствующим по порядку величины реально возникающему на поверхности пластин
ускорению, как показано в [8]. Жидкости расположены в два слоя так, чтобы вектор
массовой силы был направлен от более плотной к менее плотной жидкости. В на-
чальный момент времени жидкости покоятся, к верхнему краю тяжелой жидкости
приложено атмосферное давление patm=105 Па, а распределение давления внутри
области задано как гидростатическое в поле массовой силы. Такие начальные усло-
вия соответствуют неустойчивому положению равновесия. Кроме того, в начальный
момент вводится гармоническое возмущение поверхности раздела жидкостей. Схе-
матическое изображение постановки задачи приведено на рис. 1.

Для численного моделирования была выбрана прямоугольная расчётная область
размерами 20×10 мм с построенной в ней равномерной декартовой расчётной сеткой.
Расчёты проводились на трёх сетках разных размеров: 125×62, 250×125 и 500×250

ячеек, число Куранта было равно CFL=0.5. Слой тяжёлой жидкости толщиной
h2=4 мм соответствовал свинцу плотностью ρl=11300 кг/м3 и двучленным УРС с
параметрами P0l=15.5·109 Па, γl=2.7, слой лёгкой жидкости толщиной h1=6 мм —
стали плотностью ρs=7900 кг/м3 и параметрами УРС P0s=65·109 Па, γs=3.0, кото-

Рис. 1. Схематическое изображение постановки модельной задачи исследования при-
менимости модели неравновесной многофазной сплошной среды для численного мо-
делирования процесса развития РТН в металлах, находящихся в пластическом со-
стоянии.
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рые по предположению находятся в псевдожидком пластическом состоянии. Число
Атвуда в данном случае составляет A=(ρl−ρs)/(ρl+ρs)=0.177. В соответствии с
оценкой времени нахождения соударяющихся металлов в этом состоянии из [11], а
также приведенной далее оценки времени применимости линейной теории (5), время
окончания вычислений было принято равным 10 мкс для наблюдения нелинейной
стадии РТН. Дополнительно был проведен расчет для сетки 1000×500 ячеек только
до момента времени 4 мкс. На всех краях расчётной области задавались граничные
условия стенки с проскальзыванием, то есть поток всех величин через границу равен
нулю.

Третья фаза, которая в представленной постановке не используется, однако при-
сутствует в исходной модели, моделируется с плотностью ρ3 =5000 кг/м3 и таким
же двучленным УРС с параметрами P03=20 ·109 Па, γ3=3.0 для обеспечения боль-
шей стабильности решения в случае возникновения растягивающих напряжений.
Использование именно трёхфазной модели для исследования двухфазной задачи
обусловлено перспективой использования этой же модели для исследования струи
ударно-сжатого газа. Влияние третьей фазы на моделирование динамики процесса
пренебрежимо мало, так как её объёмная доля полагается равной α3 =0.00001 во
всей расчётной области. В области, соответствующей свинцу, объёмная доля свинца
равна αl=0.99998, соответственно в области стали уже объёмная доля стали равна
αs =0.99998. Поскольку использующийся в текущей работе метод принципиально
многофазный, возмущение поверхности раздела задаётся как возмущение разрыва
объёмных долей фаз в начальный момент времени. Формула этой поверхности η(t,x)

в момент t=0:

dy = η(0, x) = A · sin(x′), x′ =
π

B
|x− x0| −

π

2
,

где x0 — x-координата по центру расчетной области, A и B — задаваемые параметры.
Из линейной теории возмущений можно получить оценку для скорости роста

неустойчивости. Согласно [11], если начальное возмущение η(0,x) =A · sin(kx+ δ),
где k — частота, δ — сдвиг по фазе (kx+δ≡x′):

η(t, x) = A · ch(nt) · sin(kx+ δ), (4)

n =

√
k g

ρl − ρs
ρl + ρs

.

Согласно [16], характерное время применимости этого выражения можно оценить
следующим образом:

t ≈
∣∣∣∣ 1n (ln(|A|k))

∣∣∣∣ . (5)

4. Результаты численного моделирования

Рассмотрим процесс с параметрами возмущения A=0.15 мм, B=3.72 мм. В этом
случае амплитуда возмущения A≪ λ=2π/k=2B значительно меньше его длины
волны, и результаты в начале моделирования должны согласовываться с выводами
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линейной теории. На рис. 2 представлены графики зависимости удвоенной ампли-
туды возмущения от времени в расчётах в сравнении с предсказанием линейной
теории устойчивости. Размер возмущения измерялся как расстояние между самой
низкой и самой высокой точками линии αs=0.5 возле пика по центру.

Рис. 2. Зависимость амплитуды возмущения от времени для расчётов на разной
сетке, а также аналитическая оценка из линейной теории.

Рис. 3. Двумерные распределения объёмной доли свинца в момент времени 10 мкс.
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Представленные графики показывают хорошее качественное и количественное
соответствие. Как и ожидалось, присутствует сеточная сходимость результатов, то
есть увеличение числа расчётных ячеек отражается в лучшем соответствии резуль-
татов моделирования аналитическому решению. Стоит отметить, что при достаточ-
ном увеличении амплитуды предположение о малости возмущения перестаёт быть
справедливым и линейная теория устойчивости перестаёт быть достаточно точным
приближением, что и наблюдается на рис. 2 в виде заметного расхождения между
теорией и расчётом в области больших амплитуд. Согласно выражению (5), харак-
терное время применимости линейной теории в рассматриваемом случае составляет
≈ 3.72 мкс. Заметное расхождение теории и расчёта, как и ожидается, начинается
приблизительно в этот момент времени.

Помимо размеров возмущения, интерес представляет и его форма. На рис. 3
представлены двумерные распределения объёмной доли свинца в момент времени
10 мкс. Заливка соответствует результатам моделирования на сетке 500×250, пунк-
тир — 250×125, сплошная линия — 125×62 ячеек. Форма возмущения также демон-
стрирует наличие сеточной сходимости результатов. Хорошо видно, как увеличение
количества ячеек позволяет разрешить более тонкие детали возникающего течения.
На картине, полученной для сетки 500×250 ячеек, хорошо заметно наличие в реше-
нии грибовидных структур — струй тяжелой жидкости (свинца) и пузырей легкой
жидкости (стали). Эти структуры являются характерными именно для нелинейной
стадии РТН, что подтверждает верность рассуждений, с помощью которых было
выбрано такое время расчета. Для каждой из них на рис. 4 дополнительно приведе-
ны графики зависимости измеренной от уровня h1=6 мм амплитуды и ее отношения
к длине волны возмущения от времени.

Видно, что расхождение с линейной теорией наступает в момент, когда A/λ≈0.1.
Кроме того, заметно, что струи узкие в x-направлении и растут немного быстрее
широких пузырьков. Подобная небольшая асимметричность течения является ха-
рактерной для РТН с выбранным малым числом Атвуда A=0.177.

Асимптотическую скорость всплытия пузыря можно оценить разными способа-
ми. Согласно [17], если считать течение потенциальным, она равна:

VB = Fr(ρs/ρl)
√
gλ = 486.7 м/c,

F r(ρs/ρl) = Fr(0)

(
1− ρs

ρl

)1/2

, F r(0) ≈ 0.23,

где Fr — число Фруда с поправкой плавучести.
С другой стороны, для двумерного случая в работе [18] было получено следующее

выражение для скорости пузыря и приведена приближенная оценка для скорости
струи при t→∞:

VB =

√
2A

1 +A
g

3k
= 487.3 м/c, VS ≈

√
2A

1−A
g

3k
= 582.8 м/c.

При этом вычисленные с помощью линейной аппроксимации графиков рис. 4
на временном отрезке от 5 до 10 мкс значения асимптотических скоростей пузыря
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Рис. 4. Зависимость амплитуды и ее отношения к длине волны возмущения от време-
ни для струи и пузыря для расчета на сетке 500×250 ячеек, а также аналитическая
оценка из линейной теории.

и струи VB =504.1 м/c и VS =630.9 м/с с неплохой точностью совпадают с приве-
денными выше оценками. Относительная погрешность для пузыря в данном случае
составляет менее 3.6%.

Стоит отметить, что аналитические выкладки для скорости роста возмущения
(выражение (4)) выводятся в предположении о несжимаемости обеих жидкостей.
Используемая модель явным образом предполагает их сжимаемость, что может
вносить некоторую долю погрешности при сравнении результатов моделирования
с теорией. Однако при этом важно, что сжимаемость не является негативной чер-
той модели, напротив, она критически важна для моделирования реальных ударно-
волновых процессов в металлах. Для исследования влияния сжимаемости на ре-
зультаты моделирования была проведена ещё одна идентичная серия расчётов, в
которой был взят параметр УРС P0 =1 ·1012 Па для всех трёх фаз. Такое значе-
ние этого параметра на порядки уменьшает сжимаемость по сравнению с реальны-
ми материалами. На рис. 5 представлены результаты, полученные для зависимости
амплитуды возмущения от времени для этой «несжимаемой» модели, на рис. 6 —
форма возмущения.
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Рис. 5. Зависимость амплитуды возмущения от времени для расчётов на разной сет-
ке для случая «несжимаемой» модели, а также аналитическая оценка из линейной
теории.

Рис. 6. Двумерные распределения объёмной доли свинца для случая «несжимаемой»
модели в момент времени 10 мкс.
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В общем результаты сохраняют качественное соответствие с полученными ранее
данными, аналогично случаю сжимаемой модели присутствует сеточная сходимость
к аналитической кривой, однако количественное совпадение с предсказаниями ли-
нейной теории немного ухудшилось, что хорошо заметно на графике на рис. 7. Объ-
яснение этому результату можно найти в том, что численное решение сжимаемых
моделей с малым значением сжимаемости не всегда может служить достаточно хо-
рошим приближением для результатов моделирования несжимаемыми моделями.
Как показано в работе [19], попытка произвести такую подмену модели может вы-
зывать осцилляции давления и даже привести к полному отсутствию сходимости
решения к несжимаемому пределу. Вероятнее всего, именно этот фактор и ограни-
чивает возможность используемой модели по точному соответствию аналитическим
выкладкам, что не уменьшает ценности разработанного алгоритма для моделирова-
ния реальных сжимаемых течений. Помимо этого, можно предположить, что такое
значительное изменение сжимаемости приводит к замедлению сеточной сходимости
из-за значительного увеличения количества шагов по времени, необходимых для
обеспечения устойчивости алгоритма в случае больших значений параметра P0.

Рис. 7. Зависимость амплитуды возмущения от времени для расчётов на разной
сетке для случая разных сжимаемостей, а также аналитическая оценка из линейной
теории.
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Заключение

Представленные результаты показывают возможность успешного применения
выбранной модели многофазной сжимаемой гидродинамики для численного иссле-
дования процессов развития неустойчивости контактной границы между металлами,
находящимися в «псевдожидком» состоянии. Результаты численного моделирова-
ния показывают количественное и качественное соответствие теоретическим пред-
сказаниям и в целом соответствуют общему виду картины развития неустойчивости
Рэлея –Тейлора. В работе проведено исследование влияния сжимаемости фаз на ре-
зультаты моделирования. Показано, что даже изменение параметров УРС в десятки
раз не меняет качественно характеристики течения, лишь незначительно замедляет
сеточную сходимость.

Представленный в работе алгоритм показал свою устойчивость и работоспособ-
ность, что открывает возможность для дальнейшего исследования процесса сварки
взрывом, в том числе и исследования возникновения струи ударно-сжатого газа
между пластинами.
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ABSTRACT

The article presents research on the applicability of the Baer-Nunziato type

multiphase systems to the numerical modeling of the Rayleigh-Taylor insta-

bility in metals under extreme “pseudo-liquid” conditions. A model prob-

lem with a sinusoidal disturbance of the contact boundary between metals

is considered. The results show compliance with theoretical estimates. A

study of the influence of compressibility on the development of the process

was conducted. The results obtained indicate the influence of phase com-

pressibility not only on the process itself, but also on the features of its

numerical modeling.
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