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Численный эксперимент в турбулентности
(к 100-летию академика О. М. Белоцерковского)

В работе представлены основные результаты по численному моделированию
турбулентных течений, выполненные под руководством академика О.М. Бело-
церковского и продолженные его учениками. Для задачи о сдвиговом слое жид-
кости проанализирован процесс образования пространственной турбулентности
и развитого масштабного турбулентного течения. Показано, что в формирова-
нии прямого энергетического каскада Колмогорова ведущая роль принадлежит
крупным вихрям (гипотеза Белоцерковского).

При исследовании режимов двумерного течения вязкой слабосжимаемой жид-
кости под действием внешней периодической по обоим координатам силы — мо-
дифицированное течение Колмогорова — были использованы и апробированы
различные методы анализа гидродинамических характеристик. Реализованные
подходы позволяют указать, какой из режимов течения: ламинарный, хаоти-
ческий и вихревой — может наблюдаться при выборе коэффициента донного
трения, амплитуды и силы накачки. Для модифицированного течения Кол-
могорова численно продемонстрировано развитие обратного каскада энергии,
характерного для вихревых течений в двумерной турбулентности. В задаче о
течении несжимаемой вращающейся жидкости в кубе показано формирование
столбовых вихрей и возникновение как прямого каскада энергии, характерно-
го для трехмерной турбулентности, так и обратного, свойственного плоским
потокам. Предложена модель и проведено численное моделирование эффек-
та эластической турбулентности, возникающего для малых числах Рейнольдса
при наличии в потоке полимерной примеси.
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Введение

Турбулентность — это состояние вихревого движения среды, в котором скорость,
давление и другие характеристики поля потока изменяются во времени и простран-
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стве резко и нерегулярно. Основной трудностью в данном случае является пред-
сказание поведения турбулентных потоков в различных условиях. Турбулентность
окружает нас повсюду: в атмосфере, в океанах, в технических системах и биологи-
ческих объектах. Впервые турбулентность была осознана Леонардо да Винчи в XV
веке. В прошлом столетии она интенсивно изучалась математиками, физиками и ин-
женерами, включая таких гигантов как Колмогоров, Гейзенберг, Тейлор, Прандтль
и фон Карман. На данный момент турбулентность продолжает оставаться величай-
шей загадкой прикладной математики и классической физики. При этом каждый
прорыв в разных предметных областях: от хаоса до теории поля, от повышения
производительности вычислительных машин до параллельности самих численных
алгоритмов — позволял надеяться на продвижение в решении «проблемы турбу-
лентности».

Для описания турбулентных потоков используются различные модели, большин-
ство которых основано на первых принципах — уравнении неразрывности и системе
уравнений Навье – Стокса. Но точное аналитическое решение уравнений движения
жидкости для турбулентной области течения не получено. В 2018 году Институт
Клея объявил премию в миллион долларов за решение «задачи турбулентности»,
которая вошла в список задач тысячелетия.

С появлением высокопроизводительной техники стало возможным проводить
численное исследование весьма сложных турбулентных течений, основываясь на
решении данной системы при помощи сложных вычислительных алгоритмов. При-
менение «рационального» подхода, предложенного академиком О.М. Белоцерков-
ским, позволило учесть при моделировании каждой задачи структурный характер
турбулентности, который состоит из крупномасштабных когерентных структур, ста-
тистического фона и ламинарно-турбулентного перехода. Такое разделение течения
на масштабы движения дало возможность использовать для проведения численно-
го эксперимента наиболее адекватные исследуемым процессам системы уравнений
и численные методики.

В данной работе представлены основные результаты по численному моделирова-
нию турбулентных течений, выполненные под руководством академика О. М. Бело-
церковского и продолженные его учениками. На примере свободно-сдвиговой про-
странственной турбулентности в разделе 1 показана ведущая роль крупных вихрей,
исследован процесс зарождения и развития прямого энергетического каскада Кол-
могорова. Развитие обратного каскада энергии, характерного для вихревых течений
в двумерной турбулентности, продемонстрировано в разделе 2. Для течений колмо-
горовского типа, возникающих при наличии накачки и донного трения, показано
возникновение ламинарного, турбулентного и вихревого режимов течений. Числен-
ное моделирование часто встречающихся в природе квазидвумерных течений типа
циклонов и антициклонов, возникающих под действием силы Кориолиса, приведено
в разделе 3. Раздел 4 посвящен построению численного эксперимента по изучению
эффекта эластической турбулентности, возникающего при низких числах Рейнольд-
са при наличии в потоке полимерной примеси.
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1. Свободно-развитая сдвиговая турбулентность

1.1. Идеология ведущей роли «крупных вихрей»

Для анализа структуры и развития турбулентного движения большое значение
имеет исследование процессов, связывающих зарождение турбулентности и переход
к стадии развитого масштабного турбулентного течения.

В 1920 году Ричардсоном [1] была предложена концепция энергетического кас-
када, основанная на идее измельчения вихревой структуры турбулентности до вяз-
ких масштабов. Спустя 20 лет она нашла свое отражение в работах Колмогорова и
Обухова [2,3], что привело к хорошо известной концепции спектральной структуры
энергетического каскада. При достаточно больших числах Рейнольдса распределе-
ние плотности энергии пульсаций по волновым числам разбивается на ближний
участок малых чисел, где энергия генерируется в основном неустойчивостями круп-
ных вихрей, и дальний участок больших волновых чисел, где энергия диссипирует
в тепло через мелкомасштабные пульсации и вязкость. Между ближним и дальним
участками расположен инерционный участок спектра, где энергия не генерируется
и не диссипирует, а передается от меньших волновых чисел к большим. Ожида-
емый механизм энергетического обмена на инерционном участке слабо зависит от
значений исходного числа Рейнольдса. Энергетический каскад реализуется благода-
ря потере устойчивости основного течения и возникновению нового поля скоростей
с более мелкой вихревой структурой. Роль молекулярной вязкости ограничивается
тем, что она влияет только на высокочастотную часть турбулентного спектра и на
процесс перехода кинетической энергии в тепло. Этот переход происходит только
для мелких вихрей у границы спектра, для крупных масштабов такого перехода
энергии в тепло не происходит.

Большое значение в понимании вопросов развития турбулентности имело при-
знание ведущей роли крупных масштабов и проблемы когерентности. В 1985 году
в Кармановской лекции [4] О. М. Белоцерковский обосновал возможность прямо-
го численного моделирования свободной развитой турбулентности без подсеточных
моделей. Он сформулировал две гипотезы, составляющие идеологию его подхода.
Первая состоит в том, что для больших чисел Рейнольдса крупные вихри не за-
висят от мелких. Вторая гипотеза указывает на то, что вязкость жидкости можно
не учитывать при численном моделировании крупных вихрей. Основную энерге-
тику турбулентного течения несут крупные вихри, которые определяют структуру
течения. Когда инерционные члены в уравнениях Навье – Стокса преобладают над
вязкими напряжениями, то крупная структура течения формируется благодаря ди-
намическим силам и градиенту поля давления. В этом случае процесс рождения
крупных структур течения должен описываться уравнениями Эйлера. В дальней-
шем на границе крупного вихря и потока возникают вихри малого размера, кото-
рые способствуют развитию турбулентности. В работе [5] авторам путем численного
решения системы уравнений Эйлера удалось получить турбулентное течение при
условиях детерминированного начального возмущения скорости в виде одной моды
Фурье.
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Ввиду чрезвычайной сложности и нелинейности турбулентных течений адекват-
ным инструментом их изучения является численное моделирование [6]. При расчете
крупномасштабных течений хорошо себя зарекомендовали монотонные диссипативно-
устойчивые разностные схемы с положительным оператором [7], разработанные под
руководством академика О. М. Белоцерковского.

В разделе 1 на основании численных экспериментов изучено турбулентное дви-
жение в сдвиговом слое сжимаемой среды и проанализирована схема формиро-
вания турбулентного ядра и закона «–5/3» Колмогорова на инерционном участ-
ке для системы уравнений Эйлера. Численно исследованы процессы ламинарно-
турбулентного перехода, описывающие зарождение турбулентности и переход к ста-
дии развитого масштабного турбулентного течения. Отметим, что данные иссле-
дования на момент проведения численного эксперимента являлись пионерскими в
области предсказания поведения турбулентных течений. Это связано с тем, что ав-
торам удалось определить вид начального возмущения компонент скорости, при
котором происходит ламинарно-турбулентный переход.

1.2. Уравнения модели и метод расчета

Для проведения численных экспериментов используется система уравнений Эй-
лера в прямоугольной системе координат [5]. Она включает в себя закон сохранения
массы (уравнение неразрывности)

∂ρ

∂t
+∇(ρV⃗ ) = 0,

уравнение сохранения импульса

∂ρu

∂t
+∇(ρuV⃗ ) = −∂P

∂x
,

∂ρv

∂t
+∇(ρvV⃗ ) = −∂P

∂y
,

∂ρw

∂t
+∇(ρwV⃗ ) = −∂P

∂z
− ρg,

и уравнение сохранения полной энергии

∂ρE

∂t
+ div(ρE + P )V⃗ = −ρgw.

Здесь и далее V⃗ =(u,v,w) — вектор скорости; ρ — плотность; E=e+|V⃗ |2/2 — удельная
полная энергия и e — удельная внутренняя энергия, g — ускорение силы тяжести.
Для замыкания системы уравнений используется уравнение состояния идеального
газа P=(γ−1)ρe, γ — показатель адиабаты. Все вычисления выполняются в системе
измерения СИ.

При численном моделировании были использованы монотонные диссипативно-
устойчивые разностные схемы с положительным оператором, не требующим вве-
дения подсеточной турбулентности и специальных фильтров для моделирования
свободной развитой турбулентности [6,7]. Предлагаемая методика является обобще-
нием явной гибридной схемы [6]. Эта схема имеет второй порядок точности на глад-
ких решениях и, являясь монотонной, не использует ни искусственную вязкость, ни
сглаживание, ни процедуры ограничения потока, часто применяемые в некоторых
схемах вычислительной динамики жидкости.
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Рис. 1. Развитие вихревого каскада.

1.3. Результаты численных экспериментов

Рассматривается процесс возникновения турбулентности в трехмерном сдвиго-
вом слое сжимаемой невязкой среды. Расчетная область представляет собой трех-
мерный параллелепипед в прямоугольной системе координат с размерами

0 ⩽ x ⩽ L1; 0 ⩽ y ⩽ L2; 0 ⩽ z ⩽ L3.

Начальный этап развития турбулентности заключается в возникновении одной круп-
ной структуры в виде вихревого рулона, плавно обтекаемого потоком. Затем на по-
верхности рулона набегающий «ламинарный» поток сворачивается в вихревые жгу-
ты меньшего диаметра по сравнению с диаметром первичного рулона. Они разру-
шают этот вихревой рулон, приводя к образованию турбулентного режима течения.
Развитие турбулентности за счет возникновения вихревых жгутов на поверхности
рулона представлено на рис. 1. Численный эксперимент показал, что развитие вих-
ревого каскада происходит только при определенных модах и амплитудах возмуще-
ний компонент скорости, заданных в начальный момент времени. Рост амплитуды

Рис. 2. Вихревой каскад и спектр кинетической энергии на развитой стадии турбулентно-
сти.
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возмущения компонент скорости приводит к уменьшению скорости развития тур-
булентного течения. При других изученных авторами способах задания начальных
условий происходит «схлопывание» вихревого рулона в вертикальном направлении
и дальнейшая «ламинаризация» потока.

Представим результаты анализа спектральных энергетических характеристик
для режимов течения, в которых наблюдается наличие вихревого каскада. На рис. 2
показано развитие вихревого каскада неустойчивостей, а также распределение энер-
гии пульсаций по волновым числам. Проведенные расчеты показали наличие участ-
ка в энергетическом спектре, который можно отождествить с инерционным. Соот-
ветствующий наклон на этом участке спектра равен (−59◦), что означает выпол-
нение закона «-5/3» Колмогорова. Таким образом, в результате численного моде-
лирования получен каскад вихрей, энергетические характеристики которого можно
отождествить с прямым каскадом энергии Колмогорова.

2. Двумерная турбулентность и численное моделирование те-
чения колмогоровского типа

2.1. Введение

Двумерное численное моделирование турбулентных течений широко применяет-
ся при исследовании атмосферных, океанических и астрофизических течений, когда
поле скорости слабо меняется в вертикальном направлении. Характерной особенно-
стью двумерной турбулентности является наличие обратного каскада энергии, ко-
торый передает энергию от мелких масштабов к крупным. При отсутствии крупно-
масштабной диссипации энергия накапливается в потоке, который принимает фор-
му когерентного вихря. Размеры этой структуры ограничены размером исследуемой
области [8].

Еще в 1959 году академик А.Н. Колмогоров для изучения двумерной турбулент-
ности предложил исследовать простейшую модель — двумерное движение вязкой
жидкости, возникающее под действием периодического (по одной из координат) по-
ля внешней силы (накачки) [9]. В [10] показано, что для более точного описания
движения тонких слоев жидкости, вызываемого внешним периодическим силовым
полем, следует пользоваться модифицированной моделью Колмогорова, в которой
учитывается также и донное трение (трение о дно кюветы).

В физических экспериментах течение Колмогорова генерируется приложением
электромагнитной силы к тонкому слою электропроводящей жидкости. Форма ли-
нейного отклика жидкости имеет вид периодической решетки, состоящей из проти-
воположно вращающихся вихрей («паркет» Колмогорова). Кроме числа Рейнольдса
Re, устойчивость этого течения также зависит от коэффициента трения о дно α. Оно
характеризует линейную диссипацию, возникающую из-за трения на нижней грани-
це области исследования. В работе [11] проведен линейный анализ устойчивости
потока Колмогорова, создаваемого внешней силой, действующей в одном направле-
нии. Более сложные воздействия внешней силы были исследованы аналитически в
работах [12,13]. Поддержание крупномасштабного потока мелкомасштабным перио-
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дическим силовым полем в работе [14] рассматривается как эффект отрицательной
эффективной вязкости.

Тенденция к образованию крупных вихрей отмечалась в многочисленных рабо-
тах, как экспериментальных [15], так и численных [16, 17], посвященных двумер-
ной турбулентности. Большие когерентные структуры наблюдались при численном
моделировании [18, 19], основанном на решении двумерной системы уравнений На-
вье –Стокса с граничными условиями прилипания. Аналогичная когерентная вих-
ревая структура была исследована в лабораторных экспериментах в квадратной
кювете [20, 21]. Крупные вихри были получены при численном моделировании ста-
тической накачки с различными типами крупномасштабной диссипации, о чем со-
общалось в работах [22, 23]. Первая попытка установить профиль средней скорости
когерентного вихря была предпринята в работе [24], где использовались периодиче-
ские граничные условия и кратковременная коррелированная во времени накачка.
Авторами показано возникновение устойчивого вихревого диполя. В [25] в анало-
гичной постановке найден профиль средней скорости когерентного вихря, который
проявляет свойства изотропии в диапазоне расстояний до центра вихря. В работе [26]
были исследованы условия существования когерентного вихря и показано, что он
не может существовать при достаточно большом значении α. В работе [27] исследо-
ваны различные режимы течения Колмогорова в квадратной ячейке. В статье [28]
представлен исторический обзор наиболее важных опубликованных за последние
семьдесят лет работ, в которых течение Колмогорова используется в качестве вы-
числительного полигона для изучения механики жидкости, проверки численных или
экспериментальных методов или даже изучения свойств самого течения.

В работах [29–31] численно анализировалась задача двумерного течения вязкой
слабосжимаемой жидкости в квадратной ячейке при возбуждении внешней силой,
периодической по обоим направлениям, и наличии донного трения. В работе [29]
было показано, что в зависимости от α, амплитуды силы накачки G и числа Рей-
нольдса могут формироваться ламинарный, хаотический и вихревой режимы тече-
ний. Построенные на фазовой плоскости (α, G) типы течений позволили провести
их классификацию в зависимости от величин силы накачки и трения о дно.

В связи с большим разнообразием хаотических движений окончательная теория
турбулентности до сих пор не построена. Поэтому ученые находятся в постоянном
поиске наиболее точного способа анализа характеристик турбулентных потоков. Пе-
речислим наиболее известные на данный момент подходы для описания вихревых
течений. Построение полей основных параметров потока, таких как скорость, завих-
ренность, давление и плотность, дает возможность визуального восприятия структу-
ры потока. Оценка статистических, вероятностных и энергетических характеристик
течения позволяет расширить знания об объекте исследования и уловить некоторые
количественные особенности этого сложного явления. На практике для описания
сложных вихревых течений применяются как отдельные методы анализа, так и их
совокупность. Однако универсального метода пока не найдено.

В данном разделе представлены различные подходы к исследованию вихревых
потоков для двумерного течения колмогоровского типа в квадратной области. На-
ряду со стандартным анализом полей основных параметров течения авторами пред-
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ложены новые подходы для описания турбулентных течений: метод определения
положения максимальной завихренности, метод Фурье — разложения отдельных
компонент скорости — и ранговый анализ. Совокупность представленных методов
позволяет наиболее надежно составить так называемый «паспорт» явления и опре-
делить режим возникающего течения при различных характерных значениях пара-
метров, внешней силы и трения о дно.

2.2. Уравнения модели и метод расчета

Исследуется двумерное движение вязкой слабосжимаемой жидкости, которое
описывается системой уравнений Навье – Стокса. Для замыкания системы исполь-
зуется уравнение слабой сжимаемости. Соответствующие уравнения неразрывно-
сти (1), уравнения сохранения импульса (2), (3) и уравнение слабой сжимаемости (4)
представлены ниже:

∂ρ

∂t
+∇(ρV⃗ ) = 0 (1)

∂u

∂t
+∇(uV⃗ ) = −1

ρ

∂p

∂x
+ F k

x +
1

Re
∆u− αu, (2)

∂ρv

∂t
+∇(ρvV⃗ ) = −1

ρ

∂p

∂y
+ F k

y +
1

Re
∆v − αv, (3)

dp = c2ρ0
dρ

ρ
. (4)

Слагаемые F k
x ,F

k
y , k=1,2 в (2), (3) соответствуют наличию внешней силы F⃗ k. Без-

размерными параметрами являются число Рейнольдса Re=ULρ/µ, представляющее
собой отношение инерционных сил к вязким, и α=UL/τ , равное отношению инер-
ционных сил к силам трения. Здесь и далее (см. раздел 3) U — характерная круп-
номасштабная скорость течения, L — размер области, а 1/τ — скорость затухания,
связанная с трением. Приведенная система уравнений записана в безразмерной фор-
ме с использованием масштаба длины L и масштаба скорости U . Здесь p — давление;
α — коэффициент трения о дно; c — скорость звука. В правой части уравнений (2) и
(3) присутствуют слагаемые F k

x и F k
y соответственно, которые моделируют действие

силы накачки. Параметр k указывает на выбор силы с различными характеристи-
ками (см. раздел 2.3). Компоненты −αu и −αv характеризуют силу трения о дно.
Для скоростей требуется выполнение условия прилипания на границе Γ расчётной
ячейки: V⃗ |Γ=0.

Моделирование течения вязкой жидкости требует больших вычислительных мощ-
ностей, поэтому необходимо оптимизировать расчеты. Для уменьшения времени
расчетов в используемой компьютерной программе реализовано распараллеливание
вычислительного кода при помощи стандарта OPEN MP. Размер вычислительной
сетки в большинстве экспериментов подобран таким образом, чтобы результаты ка-
чественно описывали исследуемое течение с разрешением пограничного слоя.

Численное решение системы уравнений Навье –Стокса основано на методе искус-
ственной сжимаемости [32]. При этом гиперболическая часть уравнений решается
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явным методом Мак-Кормака [33], а параболическая часть — стандартным методом
конечных разностей. Схема Мак-Кормака имеет второй порядок точности по про-
странству и времени. Каждый этап расчета на каждом временном шаге разделен
на 4 этапа: разности вперед и разности назад у предиктора вдоль направления x,
а также разности вперед и назад у предиктора по направлению y. На этапе кор-
ректора расчет проводится аналогично этапу предиктора, за исключением того, что
шаг «вперед» меняется на «назад» и наоборот. Эти шаги циклически сменяют друг
друга с каждым временным шагом. Метод Мак-Кормака хорошо зарекомендовал
себя при решении гиперболических уравнений газо- и гидродинамики.

2.3. Результаты численных экспериментов

Расчетная область представляет собой квадрат размером 2π×2πм2. Начальные
условия и физические свойства жидкости таковы: p(t= 0)= p0 = 105 Па,u(t= 0)=

0м/с,v(t=0)=0м/с,ρ0=1000кг/м3,µ=0.01Па ·с. При численном моделировании мо-
гут использоваться следующие способы задания вынуждающей силы F⃗ 1=(F 1

x ,F
1
y )

и F⃗ 2=(F 2
x ,F

2
y ):

F 1
x = ρG sin(ky), F 1

y = ρG sin(kx); F 2
x = ρG cos(ky), F 2

y = ρG cos(kx),

где G — амплитуда внешней силы, k — пространственная частота внешней силы. В
нашем исследовании полагаем k=5.

Заметим, что сила F⃗ 1=(F 1
x ,F

1
y ) имеет ненулевой суммарный момент относитель-

но центра расчетной области, в то время как суммарный момент силы F⃗ 2=(F 2
x ,F

2
y )

равен нулю. Действительно, вычисляя момент вынуждающей силы, получаем

M1 =
1

S

2π∫
0

2π∫
0

(
(x− π) · F 1

y − (y − π) · F 1
x

)
dxdy = 0.4 · ρG;

M2 =
1

S

2π∫
0

2π∫
0

(
(x− π) · F 2

y − (y − π) · F 2
x

)
dxdy = 0,

где S=4π2 — площадь расчетной области.
Ниже проанализированы режимы течения, возникающие для задачи с ненуле-

вым суммарным моментом накачки F⃗ 1=(F 1
x ,F

1
y ). Как показали численные экспери-

менты, трение о дно оказывает решающее влияние на структуру формирующегося
течения. На рис. 3 представлены различные типы течения, возникающие в зависи-
мости от величины коэффициента донного трения α.

Для ламинарного режима при α>0.3 характерна картина течения, которая носит
колебательный характер (рис. 3(а)) относительно равновесного состояния, определя-
емого силой накачки. При значениях α от 0.1 до 0.3 между ламинарным (рис. 3(а))
и хаотическим (рис. 3(г)) режимами течений возникает переходный. Он является
перемежающимся, что представляет собой чередующуюся картину ламинарного и
турбулентного режимов течения в зависимости от времени наблюдения (рис. 3(б),
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(а) (б) (в) (г) (д)

Рис. 3. Поля завихренности при фиксированном параметре G для ламинарного режи-
ма течения (а) (α=0.3, Re=125 ·103); переходных режимов (б) (α= 0.2, Re= 220 · 103),
(в) (α=0.1, Re=378·103); турбулентном (г) (α=0.01, Re=754·103) и вихревом (д) (α=0.0001,
Re=1257 ·103) режимах течения.

рис. 3(в)). Развитие течения в переходном режиме (при уменьшении коэффициен-
та трения о дно до α=0.1) приводит к увеличению амплитуды колебаний вихрей
относительно их равновесного положения и последующему разрушению течения с
дальнейшим переходом к турбулентной стадии (рис. 3(в)). Критерием перехода к
хаотическому режиму (рис. 3(г)) является отрыв вихрей от исходного расположе-
ния и их хаотическое движение по расчетной ячейке. Для этого режима характерно
случайное объединение и распад вихрей различных размеров, а также короткое вре-
мя их жизни. Дальнейшее уменьшение коэффициента трения (α=0.0001) приводит
к возникновению вихревого режима течения (рис. 3(д)), для которого наблюдается
образование одной крупной структуры, занимающей всю расчетную ячейку. Наблю-
дается обратный вихревой каскад.

Отметим, что вихревой режим течения в отсутствие трения о дно подробно ис-
следован в работе [30], важным результатом которой является построенный профиль
когерентного вихря. В работе [31] построена фазовая диаграмма режимов течения в
зависимости от величин сил накачки и коэффициента трения о дно. Она приведена
на рис. 4. Здесь по горизонтальной оси отложена амплитуда силы накачки G, по
вертикальной — коэффициент трения о дно α. Кругами на фазовой диаграмме обо-
значены расчёты, соответствующие ламинарному режиму течения, квадратами —
турбулентному, а ромбами — вихревому. Переходные режимы течения выделены
отдельно: треугольниками (вверх) обозначен переход между ламинарным и турбу-
лентным течениями, а треугольниками (вниз) — переход между турбулентным и
вихревым. При каждом фиксированном значении величины силы накачки и изменя-
ющимся значении коэффициента трения о дно от минимального до максимального
наблюдаются все режимы течения: ламинарный, турбулентный, вихревой и переход-
ные. Таким образом, проведённые численные эксперименты показали, что важным
параметром, определяющим режим течения, является коэффициент трения о дно.
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Рис. 4. Фазовая диаграмма течений в зависимости от величины коэффициента трения о
дно и амплитуды накачки.

2.4. Анализ течения методом определения максимума завихренно-
сти

Полученные выше результаты численного моделирования поведения поля завих-
ренности для различных режимов течения позволяют сформулировать оригиналь-
ный подход к определению типа движения среды. Разобьем расчетную область на
ячейки с номерами i и j по горизонтали и вертикали соответственно, где i, j изменя-
ются от 1 до n, где n — размер сетки в одном направлении. Значение завихренности
ωij в ячейке (i,j) равно ωij=∂vij/∂x−∂uij/∂y, где где uij , vij — компоненты скорости
движения жидкости в ячейке (i, j).

Пусть в течении сформировалась крупная вихревая структура. Максимальное
значение завихренности локализовано в его центре. С точки зрения физики ясно,
что для данного режима изменение положения максимальной завихренности во вре-
мени происходит плавно (без скачков). Обозначим через (xmN , ymN ) координаты
максимальной завихренности на каждом временном шаге N и введем в рассмотре-
ние расстояние dxN между точками, соответствующими максимуму завихренности
для соседних шагов по времени dxN =

√
(xmN+1−xmN )2+(ymN+1−ymN )2. В си-

лу указанного выше физического предположения dxN должна гладко вести себя в
зависимости от времени.

Предложенный метод анализа был реализован численно. График поведения dxN

в зависимости от N представлен на рис. 5. По его поведению можно заметить, что
dxN меняется плавно, без скачков. Такой характер поведения можно принять в ка-
честве критерия возникновения вихревого режима. Наблюдаемый одиночный пик
на графике рис. 5 связан со случайным попаданием мелкого пристеночного вихря,
имеющего большое значение завихренности. Поэтому при таком типе анализа следу-
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ет исключить области в окрестности стенок, поскольку в них формируются мелкие
вихри с большой завихренностью.

Применим этот подход к анализу турбулентного движения. Численное модели-
рование показывает, что хаотическое течение характеризуется скачкообразным из-
менением положения максимальной завихренности в соседние моменты времени. На
рис. 6. представлено поведение расстояния dxN между точками, соответствующими
максимуму завихренности, в зависимости от N . Как и следовало ожидать, поведение
графика характеризуется наличием многочисленных скачкообразных изменений в
dxN . Следовательно, такое скачкообразное поведение dxN можно рассматривать в
качестве критерия возникновения хаотического режима течения. Между хаотиче-
ским и вихревым типами течения возникает переходный режим, когда при опреде-
ленных начальных параметрах моделирования турбулентный и вихревой режимы
сменяют друг друга. При этом для dxN характерно как скачкообразное, так и плав-
ное изменение (рис. 7).

Рис. 5. Зависимость расстояния dxN между точками максимума завихренности от времени
для вихревого режима.

Рис. 6. Зависимость расстояния dxN между точками максимума завихренности от времени
для турбулентного режима.
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Рис. 7. Зависимость расстояния dxN между точками максимальной завихренности от вре-
мени для режима перемежаемости.

2.5. Анализ течения методом исследования Фурье-компонент ско-
рости

Другой подход к анализу турбулентных течений основан на анализе Фурье-
разложения поля скорости:

U(x, y) =
∑
kx

∑
ky

[
U (1)(kx, ky) cos(kxx) cos(kyy) + U (2)(kx, ky) cos(kxx) sin(kyy)+

+U (3)(kx, ky) sin(kxx) cos(kyy) + U (4)(kx, ky) sin(kxx) sin(kyy)
]
,

где kx и ky — компоненты волнового вектора вдоль Ox и Oy соответственно,
U (i)(kx,ky) (i=1÷4) — коэффициенты Фурье, получаемые как

U (1)(kx, ky) =
1

π

2π∫
0

2π∫
0

U(x, y) cos(kxx) cos(kyy) dx dy,

U (2)(kx, ky) =
1

π

2π∫
0

2π∫
0

U(x, y) cos(kxx) sin(kyy) dx dy,

U (3)(kx, ky) =
1

π

2π∫
0

2π∫
0

U(x, y) sin(kxx) cos(kyy) dx dy,

U (4)(kx, ky) =
1

π

2π∫
0

2π∫
0

U(x, y) sin(kxx) sin(kyy) dx dy.

Рассмотрим Фурье-компоненты горизонтальной составляющей скорости на мас-
штабе всей ячейки u∗

11=U (3)(kx=1,ky =1) и на масштабе накачки u∗
55=U (3)(kx=5,
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ky =5). Перейдем к безразмерным компонентам Ulm, полагая

Ulm =
u∗
lm√
G/k

.

Для вихревого, хаотического и ламинарного режимов течения были построены гра-
фики зависимости коэффициента Фурье U11 от шага по времени N для различных
типов течения. На рис. 8 черными кругами обозначен ламинарный режим, квад-
ратами обозначен хаотический режим, вихревому режиму соответствует линия с
ромбами. Наибольшее значение U11 имеет для вихревого типа течения.

Рис. 8. Зависимость коэффициента U11 от шага по времени для разных типов течения.

Для анализа перехода течения от ламинарного к хаотическому и от хаотическо-
го к вихревому исследуем зависимость поведения Фурье-компоненты скорости на
масштабе накачки U55 от Фурье-компоненты скорости на масштабе ячейки U11 для
каждого из исследуемых типов течения. Этот метод анализа соответствует подходу,
представленному в работе [27].

В ламинарном случае скорость течения слабо меняется во времени, при этом
указанные коэффициенты Фурье также остаются неизменными. На рис. 9 это соот-
ношение представлено точкой черного цвета и соответствует ламинарному режиму
течения на рисунке рис. 3(а). В переходном режиме возникают квазипериодические
колебания скорости, что показано на вставке к рис. 9 линией с треугольниками и со-
ответствует режиму на рис. 3(б). В турбулентном режиме зависимость между U55 и
U11 становится хаотической, она представлена линией с квадратами (рис. 9). Линия
с ромбами на графике (рис. 9) соответствует вихревому режиму, поле завихренности
которого показано на рис. 3(д). Для него характерно наибольшее изменение ампли-
туды гармоники U11, что показывает ведущую роль этой гармоники в формировании
вихревого режима течения. Отметим также, что при уменьшении донного трения
значение гармоники U11 увеличивается.
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Рис. 9. Зависимость U55 от U11 для разных режимов течения при различных коэффи-
циентах трения о дно α (ламинарный α = 0.4, Re = 315 · 103, переходный (1) α = 0.35,
Re = 315 ·103, переходный (2) α = 0.3, Re = 378 ·103, хаотический α = 0.01, Re = 1570 ·103,
вихревой α = 0.0001, Re = 1885 · 103).

2.6. Анализ течения методом ранговых распределений

Следующий способ анализа характеристик гидродинамических потоков возника-
ет на основании существования аналогии между физическими моделями, что позво-
ляет распространить методы исследования одной из них для изучения другой. Вы-
ше было указано, что ламинарное течение для гидродинамической системы (1)–(4)
можно рассматривать как ее основное состояние, которое изменяется в зависимости
от величины коэффициента трения. При этом формирующиеся различные типы те-
чения соответствуют переходу из основного состояния в хаотическое, вихревое или
промежуточное, которые с точки зрения физики естественно назвать возбужденны-
ми. Для каждого из этих состояний наблюдается система вихрей, число которых
не фиксировано и меняется в ходе процесса перехода между состояниями. Таким
образом, приходится исследовать поведение системы с неопределённым числом эле-
ментов внутренней структуры.

В физике примеры таких систем дает квантовая электродинамика. В частности,
уравнение Шредингера для материальной системы (атома или молекулы) опреде-
ляет набор уровней для энергии, среди которых основной уровень является стаци-
онарным состоянием. Если система находится в возбуждённом состоянии, то суще-
ствует вероятность перехода в основное состояние, и такой переход сопровождается
излучением. Лучшее приближение для описания реальности можно получить, ес-
ли в модели будет рассматриваться атом или молекула вместе с излучением, т. е.
в сочетании со световыми квантами, из которых состоит излучение. Возвращаясь
к гидродинамической системе (1)–(4), следует указать на аналогию, возникающую
между основным состоянием атома и ламинарным течением, вихрями и световыми
квантами.

В квантовой электродинамике основная трудность при моделировании материи
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и излучения как единой системы заключалась в том, что число квантов света может
меняться в ходе процесса: они могут поглощаться или испускаться. Поэтому такая
система имеет неопределённое число частиц. Математическая теория, позволяющая
рассматривать такие системы, известна как метод вторичного квантования и была
представлена в работе В.А. Фока [34]. Согласно идее Фока, для построения вол-
новой функции при описании системы квантовых частиц следует использовать но-
вый кинематический набор переменных. Было предложено анализировать волновую
функцию не в конфигурационном пространстве, а в пространстве чисел заполнения
или, по терминологии квантовой механики, в пространстве Фока. Эти числа воз-
никают естественным образом, если перейти от исходной многочастичной волновой
функции к новой переменной, принимающей только дискретные значения. Тогда эти
числа указывают, сколько раз значения этих кинематических переменных повторя-
ются в аргументах коэффициентов разложения многочастичной волновой функции
по одночастичным функциям.

Таким образом, метод вторичного квантования показал, что введение частоты
повторяемости для выбранной соответствующим образом кинематической перемен-
ной позволяет исследовать характеристики системы с неопределённым числом ча-
стиц. Применительно к гидродинамической системе (1)–(4) знание частоты повто-
ряемости полей скорости (завихренности) можно использовать для построения ал-
горитма классификации различных типов течений жидкости [35, 36]. Известно, что
частоты повторяемости позволяют построить эмпирическую плотность распределе-
ния (PDF-распределение) случайной величины. Однако информационная интерпре-
тация частоты повторяемости с других позиций, выполненная в различных областях
человеческой деятельности, привела к использованию частотно-ранговых распреде-
лений при описании количественных характеристик наблюдаемых явлений.

В ранговых распределениях участвуют ранг объекта r и рассматриваемая харак-
теристика объекта. Опишем два подхода к построениям ранговых распределений. В
первом подходе под рангом понимается порядковый номер в упорядоченной по воз-
растанию (или по убыванию) последовательности значений рассматриваемой харак-
теристики, при этом ее наибольшему значению ставится в соответствие наибольший
ранг, наименьшему — наименьший. Во втором подходе вместо самих значений харак-
теристики используют частоту её встречаемости E, отсортированную от меньшего
к большему значению, и для полученного массива значений строится распределение
для E в зависимости от ранга r. Феномен применения частотно-ранговых распреде-
лений был открыт в первой половине двадцатого века и связан с работами, ставшими
классическими в области демографии [37], наукометрии [38], биологии [39], сейсмо-
логии [40], лингвистики [41]. Среди ранговых распределений особое место занимают
распределения, описываемые законами Ципфа, Парето, Лотки, Мандельброта и др.
В частности, если для какого-нибудь довольно большого текста составить список
всех слов, которые встретились в нем, а потом ранжировать эти слова в порядке
убывания частоты E их появления в тексте, то согласно закону Ципфа [41,42] произ-
ведение ранга (номера) слова r и частоты появления E будет величиной постоянной:
Er = const. Для других ранговых распределений были предложены модификации
закона Ципфа, однако существует достаточно много явлений, для которых описание
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их характеристик не согласуется с предложенными законами.
В лингвистике при анализе текстов известен подход Мандельброта [43]. Сравне-

ние этого подхода с другими представлено в обзоре [44]. Тогда же А. Н. Колмогоров
в своих работах рассмотрел теорию вероятностей [45] с позиции алгоритмического
подхода. Согласно его концепции, понятие случайности определено им как макси-
мально сложное. Если каждое случайное событие объяснять детерминистическим
образом, то алгоритм его возникновения будет очень сложным, а расшифровка этого
алгоритма потребует очень длинного кода. Чем сложнее описана информация, тем
длиннее необходим алгоритм расшифровки, а это, согласно Колмогорову, близко к
случайному.

Конструктивное воплощение концепция А.Н. Колмогорова получила в работах
В. П. Маслова [46], что позволяет изучать поведение наблюдаемых характеристик,
не разделяя их на детерминированные и случайные. Его подход существенно отлича-
ется от подхода Ципфа, как и от подхода всех других исследователей, изучавших эту
проблему. А именно, он использовал представление, в котором в качестве наблюда-
емой характеристики рассматривается частота встречаемости значений величины.

В [35] при построении алгоритма классификации течений колмогоровского типа
с использованием знаний о поле скоростей были применены теоретические положе-
ния В.П. Маслова, предполагающие интерпретацию информационных данных как
знаковой системы, в которой значения завихренности поля скорости рассматрива-
ются как знаки. Ранговый анализ был выполнен как для значений завихренности,
так и для частоты ее встречаемости. Показано, что для течений колмогоровского
типа можно идентифицировать различные режимы движения жидкости, сравни-
вая графики ранговых распределений завихренности. Используя эти результаты,
а также аналогичное исследование энергии и давления [36], мы покажем, что при
анализе кривых рангового распределения для частоты встречаемости различных
параметров принципиальную роль играет поведение точки перегиба, возникающей
на графике ранговых распределений.

2.6.1. Ранговые распределения

В соответствии с ранговым подходом, завихренность рассматривается в каче-
стве переменной для рангового подхода [35]. Анализ ранговых распределений был
выполнен отдельно для положительной и отрицательной завихренности и частоты
их появления в различных режимах течения. При этом меньшему рангу соответ-
ствует меньшая величина завихренности. Графики модуля отрицательной и поло-
жительной завихренности в зависимости от ранга для различных типов течения
представлены на рис. 10(а) и рис. 10(б) соответственно. Обратим внимание, что
кривые располагаются в определенном порядке. Для ламинарного течения харак-
терно линейное распределение, в турбулентном и вихревом режимах наблюдается
резкое возрастание кривых в области высоких рангов. Завихренность достигает сво-
его максимального значения для вихревого режима течения.

Приведем результаты рангового анализа задачи для частоты встречаемости за-
вихренности (рис. 11). Форма этих кривых для ламинарного, турбулентного и вихре-



Численный эксперимент в турбулентности (к 100-летию О. М. Белоцерковского)165

Рис. 10. Графики зависимости модуля отрицательной завихренности (а) и положительной
завихренности (б) от рангов для различных режимов течения.

Рис. 11. Графики зависимости частоты встречаемости модуля отрицательной завихренно-
сти (а) и положительной завихренности (б) от рангов для ламинарного, хаотического и
вихревого типов течения.

вого режимов течения значительно отличается. Было замечено, что важной харак-
теристикой, позволяющей описать особенности различных типов течений, является
возникающая на графиках точка перегиба.
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Зависимость величин и частот встречаемости завихренности от ранга g=g(r) опи-
сывается интерполяционной формулой

g(r) = k · log
(
a1r

2 + b1r + c1
a2r2 + b2r + c2

)
.

В дополнение к ранговому анализу полей завихренности проведем аналогичное
исследование полей энергии и давления [36]. На рис. 12 представлены графики за-
висимости величины модуля отрицательной завихренности (а), энергии (б) и давле-
ния (в) от рангов для различных типов течения. Отметим характерные особенности,
являющиеся общими как для завихренности, так и для энергии и давления. Кри-
вые, соответствующие различным режимам течения, располагаются в определенной
последовательности. При этом ранговые распределения для ламинарных течений
(большие значения коэффициента донного трения α) близки к линейным. В осталь-
ных режимах для завихренности и энергии характерно резкое возрастание в области
больших рангов.

Построим ранговые распределения частот встречаемости модуля отрицательной
завихренности, энергии и давления для различных режимов течения. Графики пред-
ставлены на рис. 13(а), рис. 13(б) и рис. 13(в) соответственно. Обозначим точки пе-
региба графиков. На рис. 13 видно, что при переходе от одного режима к другому
значение ранга для точки перегиба изменяется в зависимости от α.

Зависимость ранга точки перегиба от коэффициента трения α представлена на
рис. 14. Квадраты соответствуют вихревому режиму, который формируется при ма-
лых значениях коэффициента донного трения. Ромбы ограничивают область тур-
булентного режима, существующего для средних значений коэффициента трения.
Круги обозначают ламинарный режим, соответствующий высоким величинам ко-
эффициента донного трения. Переходные режимы обозначены треугольниками.

Зависимость ранга точки перегиба от коэффициента трения α может быть ап-

(а) (б) (в)

Рис. 12. Графики зависимости величины модуля отрицательной завихренности (а), энер-
гии (б) и давления (в) от рангов для различных режимов течения.
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(а) (б) (в)

Рис. 13. Графики зависимости частоты встречаемости модуля отрицательной завихрен-
ности (а), энергии (б) и давления (в) от рангов для различных режимов течения. Точки
перегиба на графиках выделены.

(а) (б) (в)

Рис. 14. Графики зависимости точки перегиба для частоты встречаемости модуля отри-
цательной завихренности (а), энергии (б) и давления (в) от рангов для различных типов
течения.

проксимирована с помощью соотношения

r =
A

1 +B(α/α0)γ
. (5)

Здесь α0 — размерный коэффициент, равный c−1, A,B и γ — подгоночные парамет-
ры. На рис. 14 приведены кривые, построенные по формуле (5).

Таким образом, график зависимости ранга точки перегиба от величины коэф-
фициента трения о дно дает возможность определить тип течения (ламинарный,
хаотический, вихревой и переходный) по положению точек на этом графике.
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3. Численное моделирование квазидвумерных турбулентных
течений

3.1. Введение

В предыдущем разделе было указано, что основной особенностью двумерного
турбулентного течения, возбуждаемого внешней силой, является возникновение об-
ратного каскада энергии. Напомним, что он состоит в увеличении пространственно-
го масштаба вихрей, создаваемых внешней силой. Рост вихрей ограничен размером
исследуемой области (ячейки) [10, 29, 47]. В этом случае энергия накапливается на
масштабе ячейки. При определенных условиях такое накопление энергии приводит
к возникновению устойчивой крупной вихревой структуры.

Возникновение когерентных вихрей наблюдается также в пространственных тур-
булентных течениях во вращающейся жидкости, когда сила Кориолиса доминирует
над силами инерции. Это приводит к формированию геострофических (столбовых)
вихрей, структура течения которых однородна вдоль оси вращения. Такой тип вих-
ревых течений называется квазидвумерным. Для этого вида течений характерно
наличие как прямого каскада энергии, наблюдаемого в трехмерной турбулентности,
так и обратного, свойственного плоским потокам. Этот процесс можно описать сле-
дующим образом. Накачка течения формирует сначала турбулентный поток во всей
исследуемой области, но под действием силы вращения данный турбулентный поток
перестраивается в вертикальные столбовые структуры, течение которых однородно
по вертикали. Около границ области исследования образуются слои Экмана, кото-
рые обеспечивают систему дополнительной накачкой энергией [8, 48,49].

В данном разделе на основании численных экспериментов изучено вихревое дви-
жение жидкости, формирующееся в кубе под действием силы Кориолиса и при
наличии накачки. Проанализирована схема формирования различных типов тече-
ния в зависимости от частоты вращения и амплитуды силы. Численно исследованы
процессы формирования турбулентного режима течения, возникновения нескольких
вихрей-антициклонов (многовихревой режим) и крупновихревого режима типа цик-
лона. Показано, что выполненные численные эксперименты находятся в согласии с
физическими исследованиями [47].

3.2. Уравнения модели и метод расчета

Рассматривается задача о течении несжимаемой жидкости в кубе со стороной L.
Куб вращается с постоянной угловой скоростью Ω вокруг оси, проходящей через
центр области в вертикальном направлении. Движение жидкости моделируется си-
стемой уравнений Навье – Стокса во вращающейся системе отсчёта:

∂u

∂t
+∇(uV⃗ ) = −1

ρ

∂p

∂x
+ 2Ωv + f0

Ax

kx
cos(kx x) sin(ky y) sin(kz z) + ν∆u,

∂v

∂t
+∇(vV⃗ ) = −1

ρ

∂p

∂y
− 2Ωu+ f0

Ay

ky
sin(kx x) cos(ky y) sin(kz z) + ν∆v,

∂w

∂t
+∇(wV⃗ ) = −1

ρ

∂p

∂z
− f0

(Ax +Ay)

kz
sin(kx x) sin(ky y) cos(kz z) + ν∆w,

(6)
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∇V⃗ = 0; V⃗
∣∣
Γ
= 0, ∇np|Γ = 0,

где кинематические и динамические переменные задачи определены в разделах 1, 2;
здесь Γ обозначает границу куба, ∇n — нормальная компонента градиента. Возбуж-
дающую течение объёмную силу характеризуют волновой вектор k⃗=(kx,ky,kz), её
амплитуда f0 и некоторые выбранные постоянные коэффициенты Ax и Ay, имею-
щие порядок единицы. Угловая скорость вращения системы Ω является изменяемым
параметром.

Безразмерными априорными числами, характеризующими задачу, являются па-
раметр kL, k = |⃗k|L, числа Рейнольдса Ref = V0/kν и Россби Rof = V0k/2Ω, где
V0 =

√
f/k — характерное значение скорости. В определении V0 присутствует f —

полная амплитуда силы, определяемая выражением

f =
((

Ax/kx
)2

+
(
Ay/ky

)2
+
(
(Ax +Ay)/kz

)2)1/2
f0.

Сложная пространственная динамика квазидвумерных турбулентных течений
делает их численное моделирование достаточно трудоемкой вычислительной зада-
чей. Особенно долгими становятся расчеты при задании нулевых граничных усло-
вий — прилипания жидкости к стенкам куба. Это связано с необходимостью подроб-
ного разрешения влияния пограничного слоя на основной поток. Нулевые граничные
условия приводят к появлению резких градиентов параметров течения в окрестно-
сти границы исследуемой области, так как здесь формируются сложные вихревые
структуры, для численного разрешения которых требуется введение подробных се-
ток вблизи граничных областей. В нашей работе для решения этой проблемы при-
менен метод сгущения сетки к границам таким образом, чтобы в пограничном слое
присутствовало как минимум 10 вычислительных ячеек.

Расчёты проводились с использованием пакета программ вычислительной гид-
родинамики OpenFOAM. Это один из немногих прикладных программных пакетов
для решения задач механики сплошных сред с открытым исходным кодом. Широ-
кий инструментарий для формализации задачи, высокая эффективность реализа-
ции, а также хорошая масштабируемость относительно архитектуры вычислитель-
ной системы позволяют удобно конструировать в пакете численные модели разной
сложности. Открытый исходный код, в свою очередь, дает возможность в деталях
контролировать ход решения, начиная от построения сетки до выбора схем аппрок-
симации слагаемых управляющей системы и методов численного решения. В основе
работы пакета программ лежит метод конечных объемов. Данный подход основан
на дискретизации пространства — разделении его на конечные объёмы, в которых
формулируются и решаются уравнения сохранения для рассматриваемых величин
(массы, импульса, энергии). Такой способ расчёта полей гарантирует выполнение
законов сохранения внутри области. Для ускорения расчётов в пакете OpenFOAM
реализованы методы декомпозиции расчетной области. Процесс параллельных вы-
числений включает в себя декомпозицию сетки и полей, параллельный запуск про-
граммы и последующую обработку подобластей. При параллельном запуске исполь-
зуется стандартный интерфейс передачи сообщений (MPI).
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3.3. Результаты численных экспериментов

Расчетная область представляет собой куб размером 2π×2π×2πм3. Грани куба
считаются твердыми и непроницаемыми. В качестве начальных условий использу-
ются нулевые условия для всех измеряемых параметров течения. Плотность жид-
кости ρ=1кг/м3, вязкость ν=0.01м2/с.

Численный эксперимент продолжается до установления стационарного состоя-
ния, переход к которому контролируется путем построения зависимости общей ки-
нетической энергии системы от времени. После достижения системой стационарного
состояния происходит обработка и анализ полученных результатов.

В ходе расчетов были выявлены три основных режима течений. Опишем кратко
их особенности. Почти все численные эксперименты проводились при числе Рей-
нольдса Ref = 82. При относительно высоких значениях априорного числа Росс-
би Rof наблюдался режим трёхмерной турбулентности, который при снижении Rof
сменялся режимом нескольких вихрей-циклонов с диаметром L′∼L/3, имеющих од-
нородную по вертикали структуру. Эти циклоны неустойчивы и имеют тенденцию
как к слиянию, так и к распаду. На краю диапазона изменения Rof возникал один
крупный вихрь-антициклон размером L′∼L, занимающий практически всю расчет-
ную область. Вращение циклонических течений сонаправлено с вращением куба,
антициклон же вращается в противоположном направлении. Выявленный набор ре-
жимов соответствует экспериментальным наблюдениям [47], хотя в эксперименте
режим нескольких циклонов (многовихревой) достигался при более высокой часто-
те вращения, нежели режим одного крупного антициклона (вихревой). Источником
этого различия является, вероятно, то, что в указанных экспериментальных работах
возбуждение течения производилось плоскими лопатками, расположенными вблизи
вертикальных рёбер куба, тогда как при численном моделировании накачка течения
производится по всему объёму куба.

На рис. 15 представлены изоповерхности поля завихренности ωz=∂v/∂x−∂u/∂y и
линии тока в горизонтальной плоскости для различных режимов и соответствующих
чисел Россби Rof . Рис. 15 (a) соответствует режиму трёхмерной турбулентности, ко-
торый формируется при Rof ≳ 0.5. На рис. 15 (б) представлен режим течения, для
которого характерно образование нескольких циклонов, однородных по вертикали,
с характерным числом Россби Rof =0.2÷0.3. На рис. 15 (в) изображен режим тече-
ния с одним крупным антициклоном, возникающий при числах Россби Rof =0.25 и
Рейнольдса Ref =100. Установившиеся течения удобнее оценивать, используя апо-
стериорные числа Рейнольдса Re=V L′/ν и Россби Ro=V/2ΩL′, где V есть сред-
неквадратичная скорость в ячейке. Данные безразмерные параметры построены по
характеристикам уже установившегося потока, тогда как аналогичные априорные
параметры определяются начальными условиями задачи. Для турбулентного режи-
ма характерный масштаб был принят равным L′=Lf =1/k.

В следующих пунктах данного раздела рассмотрены основные физические и ста-
тистические параметры, полученные в ходе численного эксперимента. Основное вни-
мание уделено анализу вихревого режима течения.
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(а) (б) (в)

Рис. 15. Первый ряд показывает изоповерхности завихренности, нормированной на удвоен-
ную угловую скорость (ωz/2Ω), для турбулентного (а, Rof∼1), многовихревого (б, Rof∼0.2)
и вихревого (в, Rof =0.25) режимов. Во втором ряду представлены осредненные по верти-
кали горизонтальные срезы полей завихренности с наложенными линиями тока для соот-
ветствующих режимов.

3.4. Распределение среднеквадратичной скорости течения

Формирование каждого из описанных режимов течения начинается с хаоти-
ческих мелкомасштабных структур, возникающих под воздействием внешней си-
лы (накачки). Определенные значения частоты вращения и силы накачки приво-
дят к формированию режима, состоящего из нескольких однородных по вертикали
вихрей-циклонов (многовихревой режим), которые движутся вместе с вращающей-
ся жидкостью. Они имеют тенденцию как к слиянию, так и к распаду. При опре-
деленных условиях данный многовихревой режим может перейти в режим одного
крупного вихря-антициклона. На графике рис. 16 представлена среднеквадратичная
скорость для каждого из перечисленных типов течения. В турбулентном режиме она
принимает наименьшее значение, тогда как многовихревой и вихревой режимы де-
монстрируют возрастание среднеквадратичной скорости.

Для наглядности на графике каждого режима изображена аппроксимационная
кривая, позволяющая судить о выходе на стационарный режим и наблюдать нали-
чие флуктуаций около стационарного значения. Сплошная линия с квадратными
точками соответствует многовихревому, пунктирная с треугольными — вихревому,
штрихпунктирная с круглыми точками — турбулентному режимам.
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Рис. 16. Распределение среднеквадратичной скорости течения в зависимости от времени
для различных типов течения, нормированное на V0.

3.5. Положение центра антициклона

При формировании вихревого режима внутри области выделяется крупное ан-
тициклоническое течение. Течение носит нестационарный характер, при котором
положение центра вихря перемещается внутри области, периодически удаляясь и
приближаясь к ее центру. Поскольку постановка задачи обладает центральной сим-
метрией, будем следить только за радиальным перемещением центра антициклона.

Для отслеживания центра антициклона разработан специальный алгоритм. Для
каждого момента времени профиль z компоненты завихренности усреднялся по вер-
тикали. Пограничные слои не учитывались. После этого находилась точка с мини-
мальным значением завихренности, и в её окрестностях выделялся центр вращения.
Это место полагалось центром антициклона.

На рис. 17 показано, что отклонение центра антициклона от центра куба носит
хаотический характер, а характерный размер максимального отклонения равен ∼1,
что значительно меньше ближайшего расстояния до границы области, равного π.

3.6. Радиальный профиль азимутальной скорости

Для построения радиального профиля азимутальной скорости отслеживалось
положение центра антициклона, после чего производилось усреднение по времени
и углу (Uϕ) относительно центра вихря [47]. При теоретическом рассмотрении осе-
симметричного неподвижного вихря во вращающейся системе была получена оцен-
ка для Uϕ [50, 51]. Сравнение теоретической кривой (светлая пунктирная линия) с
расчётной (сплошная линия) указывает на их качественное совпадение (рис. 18). Од-
нако они отличаются количественно, и аппроксимация расчётного профиля полино-
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мами (темная пунктирная линия) демонстрирует лучшее совпадение с численными
экспериментами.

3.7. Распределение плотности вероятности завихренности

Для классификации различных типов течений жидкости используем одноточеч-
ную статистику полей завихренности. Основная трудность при анализе характе-

Рис. 17. Расстояние от центра антициклона до центра области, в зависимости от времени.

Рис. 18. Усреднённый по углу профиль азимутальной скорости в зависимости от радиуса
и его аппроксимация.
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ристик выбранной динамической системы состоит в формировании информации,
подходящей для создания соответствующей процедуры алгоритмизации.

На рис. 19 изображены функции плотности вероятности распределения завихрен-
ности ωz/2Ω для турбулентного и двух вихревых режимов течения — крупного ан-
тициклона и нескольких вихрей-циклонов. Сплошная линия соответствует режиму
нескольких вихрей-циклонов, пунктирная — крупному вихрю-антициклону, штрих-
пунктирная — турбулентному режиму. На данных графиках наблюдается асиммет-
рия в их поведении, определяемая разным наклоном графика плотности вероятности
относительно вертикальной линии, проходящей через ноль. Это обусловлено нали-
чием сил Кориолиса и соответствует результатам экспериментальных исследований.
Стоит отметить, что для турбулентного режима угол наклона графика существенно
отличается в области отрицательных значений завихренности.

3.8. Энергетические характеристики течения

На рисунках 20(а, б, в) изображены энергетические спектры для трёх получен-
ных режимов течения. Графики строились по мгновенным полям скоростей после
установления стационарного режима.

Графики построены в логарифмической системе координат. На всех трёх гра-
фиках можно выделить линейный участок, который определяет вид зависимости:
E∼kγ . Угол наклона прямой определяет показатель степени. Он оценивается зна-
чениями «-2.65», «-2.8» и «-2.8» для турбулентного, многовихревого и вихревого
режимов соответственно. Следует заметить, что теоретическая оценка (закон Кол-
могорова) определяет показатель степени значением «-5/3». Данное отличие пред-
положительно связано с наличием силы Кориолиса, которая нарушает изотропию
турбулентного течения в случае его вращения.

Рис. 19. Функции плотности вероятности распределения завихренности.
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(а) (б) (в)

Рис. 20. Энергетический спектр различных режимов течения: турбулентного (а, Rof =0.5,
Ref =82); многовихревого (б, Rof =0.2, Ref =82), вихревого (в, Rof =0.5, Ref =100).

3.9. Ранговый анализ завихренности

В соответствии с предложенной ранее идеей рангового анализа выполним по-
строение ранговых кривых для завихренности, используя методику, описанную в
пункте 2.6. На рис. 21(a) представлено распределение модуля отрицательной завих-
ренности для различных режимов течения: турбулентного, многовихревого и вих-
ревого. Отметим характерное поведение построенных графиков: они располагаются
в определенной последовательности, и каждый из них соответствует определенной
величине числа Россби Rof . Смена режимов течения отражается на ранговом рас-
пределении завихренности (рис. 21(a)), где каждая из кривых асимптотически стре-
мится к вертикальной прямой на больших рангах .

На рис. 21(б) приведены графики частоты встречаемости отрицательной компо-
ненты завихренности для различных типов течений. Графики распределения имеют
характерную S-образную форму. Анализ кривых рангового распределения для ча-
стоты встречаемости завихренности обнаруживает наличие точек перегиба на гра-
фиках. Положение этих точек связано с типом течения. Для многовихревого и вих-
ревого режимов они расположены в области больших рангов, что позволяет рас-
пространить выполненный для двумерного случая ранговый анализ на трехмерный
вариант.

4. Численное моделирование эластической турбулентности

4.1. Введение

Добавление полимерных молекул в жидкость приводит к радикальному измене-
нию динамики ее течения. Лабораторные эксперименты показывают, что наличие
даже незначительной концентрации полимеров может существенно изменить свой-
ства ламинарных гидродинамических потоков и породить новую форму турбулент-
ности, получившую название эластической турбулентности [52–55]. Для ньютонов-
ского потока жидкости переход к турбулентности определяется отношением инер-
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Рис. 21. (а) Ранговое распределение завихренности, нормированной на удвоенную угловую
скорость (|ωz|/2Ω), для различных режимов течений. (б) Ранговое распределение частоты
встречаемости завихренности для различных типов течений. Точки перегиба выделены.

ционных сил к вязким и характеризуется числом Рейнольдса Re. Чем выше Re, тем
более неустойчивым становится поток, что приводит к возникновению и развитию
турбулентного режима течения.

Однако в жидкости, в которой присутствуют полимерные молекулы, возникает
так называемый вязкоупругий эффект. Полимерная молекула представляет собой
крупную молекулу, состоящую из множества повторяющихся звеньев — мономеров,
связанных в одну длинную цепь. В своем равновесном состоянии молекулы поли-
меров имеют форму клубка, а в неравновесном состоянии эти молекулы могут рас-
тягиваться или сжиматься. Поэтому, если их добавить в жидкость, получившийся
раствор будет иметь необычные свойства. Как показывают физические экспери-
менты, силы, действующие со стороны полимерной примеси на гидродинамический
поток, приводят к возникновению и развитию неустойчивости течения при очень ма-
лых числах Рейнольдса (порядка единицы). Возникает эффект эластической (или
упругой) турбулентности [52–55].

Несмотря на то, что феномен эластической турбулентности был открыт всего два
десятилетия назад, его применение уже стало возможным в различных областях,
таких, например, как перемешивание вязких жидкостей в криволинейных микро-
каналах при низких числах Re≪ 1 [56–58]. Наличие полимеров в среде позволяет
эффективно увеличить теплопередачу в микроканалах [59–61]. Кроме того, в ра-
ботах [62, 63] описано, что добавление полимеров позволяет наблюдать эффектив-
ную эмульгацию масляных капель и разрушающий капиллярный эффект. Отдельно
необходимо упомянуть влияние полимеров на интенсификацию добычи сырой нефти
по сравнению с традиционным химическим заводнением [64–66].

В связи с перечисленными свойствами полимерных растворов жидкости, акту-
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альным является построение вычислительных методик и проведение самих числен-
ных экспериментов в данной области [67–71]. Настоящий раздел посвящен числен-
ному решению задачи колмогоровского типа в квадратной ячейке для полимерного
раствора. Определены параметры гидродинамического потока и полимеров, кото-
рые приводят к возникновению эластической турбулентности. Построены энергети-
ческие характеристики задачи, поля завихренности основного гидродинамического
течения и полимерной составляющей потока.

4.2. Численное моделирование эластической турбулентности

Численное моделирование полимерных растворов представляет собой достаточ-
но сложную вычислительную задачу [67–71]. Это связано с тем, что в потоке при-
сутствует две компоненты: это основное гидродинамическое течение, описываемое
в случае вязкой среды системой уравнений Навье – Стокса (для невязкой среды —
системой уравнений Эйлера), и полимерная компонента течения, динамика которой
описывается уравнениями переноса. Наличие полимеров в гидродинамическом пото-
ке учитывается в виде внешней силы, которая присутствует в правой части системы
уравнений Навье –Стокса. Дополнительно необходимо задать модель растяжения
полимеров, которая также существенно влияет на формирование общего течения.

Основной проблемой, возникающей при численном моделировании с использо-
ванием любой вычислительной модели полимерного раствора, является численная
неустойчивость, возникающая вследствие большого числа Вайсенберга [72], кото-
рое определяется как отношение времени релаксации 1/γ0 полимерной молекулы
до ее равновесного состояния к характерному градиенту скорости потока жидко-
сти: Wi=U/γ0L. Чрезмерное растяжение полимерных молекул, возникающее при
больших величинах числа Wi, характерное для упругой турбулентности, приводит
к резким градиентам напряжений в полимерном поле, которые могут привести к
неустойчивости численного счета. Эти численные неустойчивости могут быть ча-
стично устранены за счет использования схем дискретизации с высоким разреше-
нием [67, 68], соблюдения строгих требований к полимерам [69] или добавления ко-
эффициента искусственной диффузии в определяющие уравнения на полимерную
компоненту [70,71].

Поскольку режим эластической турбулентности обусловлен исключительно упру-
гими неустойчивостями, коэффициент искусственной диффузии может существенно
повлиять на численное решение, что может привести к неправильной физической
интерпретации хаотического режима [71]. Отсутствие же коэффициента диффузии
влечет за собой возникновение больших градиентов растяжений полимерных моле-
кул. Для численной устойчивости счета при этом необходимо использовать очень
подробные вычислительные сетки. В некоторых случаях эти проблемы могут быть
частично устранены за счет локального использования искусственной диффузии
только в областях с высокими градиентами растяжений полимеров [73]. Указанные
сложности моделирования предъявляют высокие требования к качеству вычисли-
тельного алгоритма, выбранного для расчета полимерного потока.

В данном разделе используется численная схема второго порядка точности, скон-
струированная авторами [74–77] для прямого численного моделирования динамики
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полимерных растворов. Отдельно заметим, что для моделирования гидродинамиче-
ской составляющей потока применяется линеаризованная схема Годунова [74], кото-
рая была разработана авторами под руководством академика Сергея Константино-
вича Годунова. Полимерная составляющая потока решается численной методикой
Курганова –Тедмора [67].

С помощью методики Курганова –Тедмора исследовано течение колмогоровско-
го типа в периодической квадратной области для вязкого полимерного раствора.
Параметры задачи подбирались таким образом, чтобы число Рейнольдса было ми-
нимальным Re∼ 10−1 и таким образом нивелировалось действие инерционных сил
на течение. В ходе численных экспериментов получена неустойчивость полимерно-
го течения и построены энергетические спектры турбулентных потоков. В спектрах
наблюдается инерционный диапазон энергетического каскада гидродинамического
потока с показателем «-4», для каскада растяжений полимерных молекул этот по-
казатель составляет «-1.6».

4.3. Уравнения переноса для полимера

Полимерная молекула, помещенная во внешнее неоднородное гидродинамическое
поле, деформируется, поскольку различные ее звенья движутся с различной скоро-
стью. Относительная деформация характеризуется вектором R⃗=(R1,R2,R3), опре-
деляющим направление, в котором вытягивается полимерный клубок. При форму-
лировке уравнения переноса для R⃗ естественным требованием является ограничение
тензорной инвариантности: векторный характер объекта должен сохраняться вдоль
несущего его потока жидкости. Для этого воспользуемся подходом Олдройда [78],
который указал, что тензорный характер объекта сохраняется, если использовать
аппарат производной Ли. Производная Ли LvR

k характеризует изменение вектора
R⃗ вдоль векторного поля vi и, по определению [79], равна

LvR
i = vj

∂Ri

∂xj
− ∂vi

∂xj
Rj .

Если полимер переносится вместе с потоком, то

DRi

Dt
=

∂Ri

∂t
+ LvR

i =
dRi

dt
− ∂vi

∂xj
Rj = 0. (7)

Уравнение (7) является следствием общего утверждения, доказанного в [80]. Что-
бы описать деформацию полимера в гидродинамическом поле, запишем уравнение
переноса (7) в виде

DRi

Dt
=

dRi

dt
− ∂vi

∂xj
Rj = Ii +

∂Γi
j

∂xj
. (8)

В правую часть (7) введен источник Ik для деформаций и их поток Γk
i . Эти функции

определяются в соответствии с требованиями неравновесной термодинамики.
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4.4. Диссипативная функция

Будем следовать стандартной схеме неравновесной термодинамики для вычис-
ления диссипативной функции [81]. Запишем уравнения законов сохранения массы,
импульса, первый и второй законы термодинамики:

dρ

dt
+ ρ

∂vk
∂xk

= 0, ρ
dvi
dt

=
∂σij

∂xj
+ ρfi. (9)

ρ
dU

dt
= −

∂J
(q)
j

∂xj
+ σij

∂vi
∂xj

, ρ
ds

dt
= −

∂J
(s)
j

∂xj
+D. (10)

Для сокращения записи формул введены обозначения для компонент скорости u=v1,
v=v2, w= v3 под повторяющимся индексам подразумевается суммирование. Здесь
σij — компоненты поля напряжений, предполагаемого симметричным, J (q)

j и J
(s)
j —

составляющие потоков тепла и энтропии, D — диссипативная функция, fi — уско-
рения внешних массовых сил.

Будем предполагать, что внутренняя энергия системы жидкость — полимер U

является функцией энтропии s, плотности ρ и вектора относительной деформации
R⃗:U=U(s,ρ,R⃗). Поскольку функция U=U(s,ρ,R⃗) является скалярной, то она зависит
от вектора R⃗ через его инвариант, которым является длина R= |R⃗| :U =U(s,ρ,R).
Отсюда вдоль траектории частицы следует тождество Гиббса [81]:

dU

dt
= T

ds

dt
+

∂U

∂ρ

dρ

dt
+

∂U

∂R

Ri

R

dRi

dt
.

Подставляя сюда выражения для производных по времени от внутренней энергии и
энтропии из (10), получим

−
∂J

(s)
j

∂xj
+D = − 1

T

∂J
(q)
j

∂xj
+

1

T

(
σij

∂vi
∂xj

− ρ
∂U

∂ρ

dρ

dt
− ρ

∂U

∂R

Ri

R

dRi

dt

)
. (11)

Для исключения в правой части (11) производных по времени от ρ и Ri необ-
ходимо воспользоваться уравнениями переноса (8), (9). После ряда преобразований
получим

σij
∂vi
∂xj

− ρ
∂U

∂ρ

dρ

dt
− ρ

∂U

∂R

Ri

R

dRi

dt
=

=

(
σij + ρ2

∂U

∂ρ
δij − ρ

∂U

∂R

RiRj

R

)
− ρIi

∂U

∂R

Ri

R
− ρ

∂U

∂R

Ri

R

∂Γi
j

∂xj
,

(12)

где eij = (∂vi/∂x
j + ∂vj/x

i)/2 — тензор скоростей деформации. Подставим (12) в
(11) и выделим потоковые слагаемые так, чтобы в правой части остались только те
вклады, которые образуют билинейную форму термодинамических сил и потоков.
В результате придем к соотношению

− ∂

∂xj

(
J
(s)
j − 1

T
J
(q)
j − 1

T

∂U

∂R

Ri

R
Γi
j

)
+D =

eij
T

(
σij + ρ2

∂U

∂ρ
δij − ρ

∂U

∂R

RiRj

R

)
−

−− 1

T
ρIi

∂U

∂R

Ri

R
+

1

T
Γi
j

∂

∂xj

(
ρ
∂U

∂R

Ri

R

)
− 1

T 2

∂T

∂xi

∂

∂xj

(
J
(q)
j +

1

T
ρ
∂U

∂R

Ri

R
Γi
j

)
.

(13)
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Стандартный анализ (13) в рамках предположений неравновесной термодинами-
ки [81] приводит к следующему выражению для потока энтропии:

J
(s)
j =

1

T
J
(q)
j +

1

T
ρ
∂U

∂R

Ri

R
Γi
j .

Таким образом, для диссипативной функции окончательно получим

D =
eij
T

(
σij + ρ2

∂U

∂ρ
δij − ρ

∂U

∂R

RiRj

R

)
− 1

T 2

∂T

∂xi

∂

∂xj

(
J
(q)
j +

1

T

∂U

∂R

Ri

R
Γi
j

)
−

− 1

T
ρIi

∂U

∂R

Ri

R
+

1

T
Γi
j

∂

∂xj

(
ρ
∂U

∂R

Ri

R

)
.

(14)

В такой форме диссипативная функция представлена билинейной формой термоди-
намических сил и потоков

D = XiYi,
∂D

∂Xi
= Yi, D ⩾ 0. (15)

Примем для потоков приближение линейных связей. В этом случае

J
(q)
j = −λ

∂T

∂xj
− 1

T
ρ
∂U

∂R

Ri

R
Γi
j , Γi

j = γik
jm

∂

∂xk

(
ρ
∂U

∂R

Rm

R

)
. (16)

Феноменологические коэффициенты в (16) должны удовлетворять ограничениям,
обеспечивающим неотрицательность диссипативной функции. В частности, λ⩾0, а
γik
jm — коэффициенты положительно определенной квадратичной формы.

В соответствии с (14), (15) можно записать уравнения состояния материала

σij = −ρ2
∂U

∂ρ
δij + ρ

∂U

∂R

RiRj

R
+

∂DT

∂eij
, −ρ

∂U

∂R

Ri

R
=

∂DT

∂Ii
. (17)

Заметим, что в выражении для σij имеются слагаемые, связанные с деформаци-
ями полимера — структурные составляющие поля напряжений.

4.5. Уравнения модели

Будем полагать, что внутренняя энергия и диссипативная функция заданы. Пред-
ставим внутреннюю энергию в виде

U = U0 + U1 = U0(s, ρ) + U1(R), U1 =
Aγ0
2ρ

R2 (18)

c некоторыми коэффициентами A,γ0⩾0. Предполагаем, что диссипативная функция
имеет структуру относительно источника Ii, аналогичную структуре диссипатив-
ной функции в модели обычной вязкой жидкости относительно тензора скоростей
деформации eij : D(λeij) = λ2D(eij), D(λIi) = λ2D(Ii). Тогда отсюда и из (17),(18)
следует, что

σij = −pδij +Aγ0R
iRj + µ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

d
δij

∂vk
∂k

)
+ ζδij

∂vk
∂xk

, p = ρ2
∂U

∂ρ
, (19)

Ii = −Aγ0R
i

2
, (20)
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где d — размерность пространства (d=2,3), η,ζ — коэффициенты вязкости. Для
коэффициентов γik

jm выберем следующую параметризацию:

γik
jm = δimδjk

Cd

Aγ0
, Cd ⩾ 0.

Отсюда и из (16), (18) следует, что

Γi
j = Cd

∂Ri

∂xj
. (21)

Полученные соотношения справедливы при размерности пространства d=2,3.
Предполагая дальнейшее выполнение численного моделирования для d=2, запишем
соответствующие уравнения модели. Используя принятые в предыдущих разделах
обозначения для компонент скорости, полагаем v1=u, v2=v, V⃗ = (u, v),
R1 =Rx, R2 =Ry. Ускорения внешних массовых сил равны f1 =−Gsin(ky)cos(kx),
f2=Gsin(kx)cos(ky), G — интенсивность внешней силы. Также напомним, что чис-
ленное моделирование выполнялось при условии слабой сжимаемости. Это приво-
дит к тому, что в уравнении для импульсов в правой части можно пренебречь сла-
гаемым, пропорциональным ∂vk/∂xk. В результате уравнения законов сохранения
массы, импульса и уравнение переноса для полимера можно записать в виде:

∂ρ

∂t
+∇(ρV⃗ ) = 0,

∂ρu

∂t
+∇(ρuV⃗ ) = −∂p

∂x
− ρG sin(ky) cos(kx) + µ∆u+Aγ0

∂(Rx)2

∂x
+Aγ0

∂RxRy

∂y
, (22)

∂ρv

∂t
+∇(ρvV⃗ ) = −∂p

∂y
+ ρG sin(kx) cos(ky) + µ∆v +Aγ0

∂(Ry)2

∂y
+Aγ0

∂RxRy

∂x
,

∂Rx

∂t
+ u

∂Rx

∂x
+ v

∂Rx

∂y
−Rx ∂u

∂x
−Ry ∂u

∂y
+ γ0R

x = Cd∆Rx,

∂Ry

∂t
+ u

∂Ry

∂x
+ v

∂Ry

∂y
−Rx ∂v

∂x
−Ry ∂v

∂y
+ γ0R

y = Cd∆Ry.

Здесь и далее ∆ — оператор Лапласа, параметр γ0 характеризует время релаксации
полимерной молекулы.

Для замыкания системы добавим закон сохранения энергии и уравнение состоя-
ния. Объемная плотность энергии E равна: E=ρ|V⃗ |2/2+ρU . Тогда

∂

∂t

(
ρ|V⃗ |2

2

)
=

∂ρ

∂t

|V⃗ |2

2
+ ρ

∂vk

∂t
vk. (23)

Из (9) определяем

∂ρ

∂t
= −∂ρvi

∂xi
, ρ

∂vk
∂t

= −ρvi
vk
∂xi

+
∂σki

∂xi
+ ρfk.

Отсюда и из (23) следует представление для изменения объемной плотности кине-
тической энергии:

∂

∂t

(
ρ|V⃗ |2

2

)
= − ∂

∂xk

(
ρvk|V⃗ |2

2

)
+

∂σkiv
k

∂xi
− σkieki + ρfkvk. (24)
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Изменение со временем объемной плотности внутренней энергии ρU равно:

∂ρU

∂t
= −U

∂ρvi
∂xi

+ ρ
∂U

∂t
= −∂ρUvi

∂xi
+ ρvi

∂U

∂xi
+ ρ

∂U

∂t
= −∂ρUvi

∂xi
+ ρ

dU

dt
. (25)

Используя (10), можно записать (25) в следующем виде:

∂ρU

∂t
= −∂ρUvi

∂xi
−

∂J
(q)
j

∂xj
+ σijeij . (26)

Соотношения (24), (26) позволяют представить изменение объемной плотности
энергии E в виде

∂E

∂t
=

∂

∂t

(
ρ|V⃗ |2

2
+ ρU

)
= − ∂

∂xi
vi

(
ρ|V⃗ |2

2
+ ρU

)
+

∂σkiv
k

∂xi
+ ρfkvk −

∂J
(q)
j

∂xj
. (27)

Подставим в (27) выражение для σki из (19) при d=2 и воспользуемся условием
слабой сжимаемости, что позволяет пренебречь вкладом, содержащим коэффици-
ент, ζ и приводит к уравнению изменения энергии:

∂E

∂t
+∇(V⃗ (E + p)) =

∂

∂t

(
ρ|V⃗ |2

2
+ ρU

)
+∇

(
V⃗ (

ρ|V⃗ |2

2
+ ρU + p)

)
=

=
∂

∂x

[
µu

(
∂u

∂x
− ∂v

∂y

)
+Auγ0(R

x)2 + vµ

(
∂v

∂x
+

∂u

∂y

)
+Avγ0R

xRy

]
+

+
∂

∂y

[
µu(

∂u

∂y
+

∂v

∂x
) +Auγ0R

xRy + vµ(
∂v

∂y
− ∂u

∂x
) +Avγ0(R

y)2)

]
−

−uρG sin(ky) cos(kx) + vρG sin(kx) cos(ky)−
∂J

(q)
j

∂xj
.

(28)

При T =const представление для потока J
(q)
j дается формулой (16), которая при

учете (18), записывается в виде

J
(q)
j = − 1

T
Aγ0R

iΓi
j .

Подставляя сюда (21), получим

J
(q)
j = − 1

T
Aγ0CdR

i ∂R
i

∂xj
= − 1

2T
Aγ0Cd

∂R2

∂xj
.

Окончательно уравнение (28) для энергии редуцируется к следующей форме:

∂

∂t

(
ρ|V⃗ |2

2
+ ρU

)
+∇

(
V⃗

(
ρ|V⃗ |2

2
+ ρU + p

))
=

=
∂

∂x

[
µu

(
∂u

∂x
− ∂v

∂y

)
+Auγ0(R

x)2 + vµ

(
∂v

∂x
+

∂u

∂y

)
+Avγ0R

xRy

]
+

+
∂

∂y

[
µu(

∂u

∂y
+

∂v

∂x
) +Auγ0R

xRy + vµ(
∂v

∂y
− ∂u

∂x
) +Avγ0(R

y)2)

]
−

−uρG sin(ky) cos(kx) + vρG sin(kx) cos(ky) +
1

2T
Aγ0Cd∆R2.

(29)
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Получим уравнение состояния. В отсутствии полимера для идеального газа U =U0

и его давление p0=ρ2∂U0/∂ρ=ρU0. При наличии полимера внутренняя энергия да-
ется формулой (18), тогда давление p (19) определяется соотношением

p = p0 −
Aγ0
2

R2 = ρ

(
U0 −

Aγ0
2ρ

R2

)
= ρ

(
U − Aγ0

ρ
R2

)
. (30)

4.6. Численная методика

Для численной аппроксимации системы (22) применялась комбинация двух чис-
ленных методик: линеаризованного метода Годунова [74] и метода Курганова – Тед-
мора [67]. Линеаризованным методом Годунова аппроксимировалась гидродинами-
ческая часть модели — система уравнений Навье – Стокса, а уравнения, описыва-
ющие полимерную компоненту течения, аппроксимировались методом Курганова –
Тедмора. Подробное описание линеаризованной схемы Годунова представлено в ра-
боте [74]. Опишем аппроксимацию уравнений для вектора R⃗. Представим соответ-
ствующее уравнение в дивергентном виде:(

Rx

Ry

)
t

+

(
uRx

uRy

)
x

−
(
Cd

∂Rx

∂x

Cd
∂Ry

∂x

)
x

+

(
vRx

vRy

)
y

−

(
Cd

∂Rx

∂y

Cd
∂Ry

∂y

)
y

=

=

(
2Rx ∂u

∂x +Ry ∂u
∂y +Rx ∂v

∂y − γ0R
x

2Ry ∂v
∂y +Ry ∂u

∂x +Rx ∂v
∂x − γ0R

y

)
.

Суть методики Курганова – Тедмора состоит в вычислении конвективных пото-

ков
(
uRx

uRy

)
,

(
vRx

vRy

)
на гранях расчетных ячеек, для аппроксимации остальных чле-

нов (диффузионных и источника) применяется обычное осреднение на гранях яче-

ек расчетной сетки. Обозначим конвективный поток вдоль осей x,y :F =

(
uRx

uRy

)
,

G=

(
vRx

vRy

)
, вектор-столбец неизвестных — R̃=

(
Rx

Ry

)
. Конвективные потоки тогда

будут вычисляться следующим образом:

Fn
i+ 1

2 ,j
=

F ((R̃+
i+ 1

2 ,j
)n) + F ((R̃−

i− 1
2 ,j

)n)

2
−

(ax
i+ 1

2 ,j
)n

2

(
(R̃+

i+ 1
2 ,j

)n − (R̃−
i− 1

2 ,j
)n
)
;

Gn
i,j+ 1

2
=

G((R̃+
i,j+ 1

2

)n) +G((R̃−
i,j− 1

2

)n)

2
−

(ay
i,j+ 1

2

)n

2

(
(R̃+

i,j+ 1
2

)n − (R̃−
i,j− 1

2

)n
)
;

(R̃±
i+ 1

2 ,j
)n = R̃n

i+1,j ∓
∆x

2
(Rx)ni+ 1

2±
1
2 ,j

; (R̃±
i,j+ 1

2

)n = R̃n
i,j+1 ∓

∆y

2
(Ry)ni,j+ 1

2±
1
2
;

(axi+ 1
2 ,j

)n = max
±

ax(xi+ 1
2
, yj) =

∣∣∣ui+ 1
2 ,j

∣∣∣ ;
(ay

i,j+ 1
2

)n = max
±

ay(xi, yj+ 1
2
) =

∣∣∣vi,j+ 1
2

∣∣∣ ;
ui+ 1

2 ,j
=

1

2
(ui,j + ui+1,j); vi,j+ 1

2
=

1

2
(vi,j + vi,j+1);
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(Rx)ni,j = minmod

(
θ
(Rx)ni,j − (Rx)ni−1,j

∆x
,
(Rx)ni+1,j − (Rx)ni−1,j

2∆x
, θ

(Rx)ni+1,j − (Rx)ni,j
∆x

)
;

(Ry)ni,j = minmod

(
θ
(Ry)ni,j − (Ry)ni,j−1

∆y
,
(Ry)ni,j+1 − (Rx)ni,j−1

2∆y
, θ

(Ry)ni,j+1 − (Ry)ni,j
∆y

)
;

θ = 1.5.

Здесь полуцелые индексы обозначают потоки на гранях ячеек, целые –– значе-
ния величин в центре ячейки, a=(ax,ay) — локальную скорость распространения
возмущений, компоненты которой вычисляются как собственные числа якобианов∣∣∂F
∂R −axI

∣∣=0,
∣∣∂G
∂R −ayI

∣∣=0, ∂F∂R =

∣∣∣∣u 0

0 u

∣∣∣∣, ∂G∂R =

∣∣∣∣v 0

0 v

∣∣∣∣. Для ограничения наклонов ре-

конструированного решения в ячейке использовался minmod ограничитель.

4.7. Постановка задачи

Рассматривается течение полимерного раствора под действием периодической
внешней силы в квадратной расчетной области размером 2π×2πм2. На границах
области задаются периодические граничные условия:

u
∣∣
x=0

= u
∣∣
x=L

, v
∣∣
x=0

= v
∣∣
x=L

, p
∣∣
x=0

= p
∣∣
x=L

, ρ
∣∣
x=0

= ρ
∣∣
x=L

;

u
∣∣
y=0

= u
∣∣
y=L

, v
∣∣
y=0

= v
∣∣
y=L

, p
∣∣
y=0

= p
∣∣
y=L

, ρ
∣∣
y=0

= ρ
∣∣
y=L

.

В начале расчетов раствор находится в состоянии покоя:

u(x, y, t = 0) = 0
м
с
; v(x, y, t = 0) = 0

м
с
.

Величины плотности и давления в этот момент равны

ρ(x, y, t = 0) = 10
кг
м3

; p(x, y, t = 0) = 103Па.

Начальные значения компонент Rx,Ry даются формулами:

Rx(x, y, t = 0) = 0.2 cos kxx, Ry(x, y, t = 0) = 0.2 cos kyy, kx = 1 м−1, ky = 1 м−1.

Коэффициент искусственной диффузии Cd подбирался эмпирически, исходя из
требований устойчивого численного счета и соотношения

√
Cd/γ0∼h, где h — харак-

терный размер ячейки вычислительной сетки. Интенсивность внешней силы прини-
малась равной G=10−2H/кг, коэффициент релаксации полимерной молекулы пола-
гался γ0=10−6c−1, соответственно Cd=10−9м2/c. Величина динамической вязкости
µ= 0.5Па с и частота внешней периодической силы k= 2м−1. Величина парамет-
ра A, являющегося аналогом концентрации полимеров в растворе, варьировалась в
пределах A=50÷5 ·106.

4.8. Результаты вычислительного эксперимента

На рис. 22 показаны поля завихренности течения в момент времени t∼630c для
различных величин параметра A. Во всех приведенных случаях число Рейнольд-
са Re∼ 10−1, число Вайсенберга Wi∼ 103. При увеличении параметра A течение
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теряет свою устойчивость и становится хаотическим. На рис. 23 показаны поля ско-
рости течения (степень насыщенности цветом характеризует амплитуду) и линии
тока скорости. На рис. 24 и рис. 25 показаны поля завихренности течения и растя-
жения полимеров соответственно в момент времени t∼428c для различных значений
коэффициента релаксации полимерной молекулы γ0. Как и следует ожидать, умень-
шение γ0 приводит к тому что течение становится более неустойчивым.

Рис. 22. Поля завихренности течения полимерного раствора для различных значений па-
раметра A в момент времени t ∼ 630c.

Рис. 23. Картины скорости течения полимерного раствора с линиями тока для различных
значений параметра A в момент времени t ∼ 630c.
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Течение, возникающее в результате воздействия постоянной внешней силы, пред-
ставляет собой систему когерентных вихрей и называется «паркетом Колмогорова».
Наибольший градиент параметров данного течения наблюдается в областях между

Рис. 24. Картины завихренности течения в режиме эластической турбулентности в зави-
симости от коэффициента релаксации γ0 при фиксированном значении коэффициента A в
момент времени t ∼ 428c.

Рис. 25. Картины растяжения полимерных молекул течения в режиме эластической тур-
булентности, в зависимости от коэффициента релаксации γ0 при фиксированном значении
коэффициента A в момент времени t ∼ 428c.
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соседними вихрями, которые имеют разное направление закрутки. Степень растяже-
ния полимерных молекул здесь наибольшая. Влияние сильно растянутых полимеров
на поток приводит к возникновению неустойчивостей и потере стабильности гидро-
динамического течения. Это позволяет локализовать участки расчетной области,
где возникает эластическая неустойчивость.

На рис. 26 приведены спектры скорости Ev(k) (слева) и растяжений полимер-
ных молекул ER(k) (справа) полученного течения в момент времени t∼ 630c для
различных значений параметра γ0. Спектры вычислялись через Фурье-разложение
векторных полей f⃗ = V⃗ и f⃗ = R⃗ [5]:

E(kx, ky, t) =

1∑
i=0

4∑
j=1

f2
i(j)(kx, ky, t)+

+2

1∑
i=0

[fi(1)(kx, ky, t)fi(2)(kx, ky, t) + fi(3)(kx, ky, t)fi(4)(kx, ky, t)],

fi(1)(kx, ky, t) =
1

π

2π∫
0

fi(x, y, t) cos(kxx) cos(kyy)dxdy,

fi(2)(kx, ky, t) =
1

π

2π∫
0

fi(x, y, t) cos(kxx) sin(kyy)dxdy,

fi(3)(kx, ky, t) =
1

π

2π∫
0

fi(x, y, t) sin(kxx) cos(kyy)dxdy,

fi(4)(kx, ky, t) =
1

π

2π∫
0

fi(x, y, t) sin(kxx) sin(kyy)dxdy.

Спектр E(k,t) для соответствующего поля получается путем усреднения по углам

Рис. 26. Спектры скорости (а) и растяжения полимерных молекул (б) хаотических течений
полимерного раствора для различных значений параметра γ0, построенные в логарифми-
ческом масштабе по обеим осям.
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Рис. 27. Ранговые распределения завихренности эластической турбулентности. На графи-
ках изображены величина (а), частота встречаемости (б), точка перегиба частоты (в), в
зависимости от коэффициента релаксации γ0.

волнового вектора k:

E(k, t) =
∑

kx,ky :|k−
√

k2
x+k2

y|<δ

E(kx, ky, t), δ = 0.5.

Рис. 26 показывает, что инерциальный поддиапазон формируется при γ0 ≲ 10−3.
В логарифмических координатах наклон энергетического спектра гидродинамиче-
ского потока имеет показатель, равный ≈−4. Для каскада растяжений полимеров
показатель составляет ≈−1.6.

Таким образом, полученные в результате численного моделирования течения по-
лимерного раствора соответствуют хаотическому движению среды, возникающему
при низких числах Рейнольдса и вызванному наличием полимерной примеси. Дан-
ный тип течения называется эластической (или полимерной) турбулентностью.

4.9. Ранговый анализ завихренности

Проведен ранговый анализ поля завихренности (рис. 27 (а))для различных ко-
эффициентов релаксации полимерной молекулы γ0 при фиксированном значении
коэффициента A. Большое значение данного коэффициента соответствует ламинар-
ному режиму течения. В режиме эластической турбулентности на графике ранго-
вых кривых для частоты встречаемости завихренности обнаружена точка перегиба
(рис. 27(б, в)). Возникновение этой точки показывает наличие зависимости в пове-
дении ранговых кривых от режима формирующегося течения. В случае ламинар-
ного потока точка перегиба находится в области малых рангов. При турбулизации
течения она смещается в сторону больших рангов. Данный факт соответствует ре-
зультатам рангового анализа, проведенного для гидродинамической задачи колмо-
горовского типа из раздела 2, что показывает эффективность применения методики
рангового анализа при рассмотрении турбулентных потоков.
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Заключение

Численные эксперименты, представленные в данной работе, выполнены сотруд-
никами Отдела численных методов и турбулентности Института автоматизации и
проектирования РАН под руководством доктора физико-математических наук Свет-
ланы Владимировны Фортовой. Изучение двумерной турбулентности проводили
А. О. Посудневская (аспирантка МФТИ) и А.Н. Долуденко (к.ф.-м. наук, ОИВТ
РАН), квазидвумерной турбулентности — А. Д. Ермаков (студент МФТИ), эласти-
ческой турбулентности — В.В. Денисенко (к.ф.-м. наук). Термодинамическое обос-
нование модели эластической турбулентности выполнено академиком М. А. Гузе-
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ABSTRACT

The paper presents the main results on numerical modeling of turbulent

flows, carried out under the guidance of academician O.M. Belotserkovsky

and continued by his students. For the problem of the shear layer of a liquid,

the process of formation of spatial turbulence and a developed large-scale

turbulent flow is analyzed. It is shown that large vortices play a leading role

in the formation of the direct Kolmogorov energy cascade (Belotserkovsky’s

hypothesis).

When studying the modes of two—dimensional flow of a viscous, slightly

compressible liquid under the action of an external periodic force in both

coordinates, the modified Kolmogorov flow, various methods for analyz-

ing hydrodynamic characteristics were used and tested. The implemented

approaches make it possible to specify which of the flow modes: laminar,

chaotic, and vortex — can be observed when selecting the bottom friction

coefficient, amplitude, and pumping force. For the modified Kolmogorov

flow, the development of the reverse energy cascade characteristic of vor-

tex flows in two-dimensional turbulence is numerically demonstrated. The

problem of the flow of an incompressible rotating fluid in a cube shows the

formation of column vortices and the occurrence of both a direct cascade

of energy, characteristic of three-dimensional turbulence, and the reverse,

characteristic of flat flows. A model is proposed and numerical simulation

of the elastic turbulence effect that occurs for small Reynolds numbers in

the presence of a polymer impurity in the flow is performed.

Key words: numerical modeling, turbulent flows, forward and reverse energy

cascades, Kolmogorov problem, quasi-two-dimensional flows, shear flows,

elastic turbulence.
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