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Focusing of hydroacoustic images based

on multiangle sounding data

In this paper we prove a convergent part of inhomogeneous Groshev type theo-
rem for non–degenerate curves in Euclidean space where an error function is not
necessarily monotonic. Our result naturally incorporates and generalizes the ho-
mogeneous measure theorem for non-degenerate curves. In particular, the method
of Inhomogeneous Transference Principle and Sprindzuk’s method of essential and
inessential domains are used in the proof.
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Introduction

In this paper, the problem of improving the quality and constructing of sonar images

of the seabed based on measurements of a side-scan sonar (SSS) is considered. It is

assumed that the carrier of the receiving-transmitting antenna, emitting a pulsed signal,

moves at a constant speed along a straight line. As a mathematical model, the equation

for the transfer of high-frequency acoustic radiation [1–4] with a boundary condition

describing diffuse reflection on the bottom surface [5–9] is used. Reconstruction of a

bottom scattering coefficient posed as an inverse problem for this model. In the framework

of the single-scattering approximation an integral equation was obtained. The equation

has an explicit solution only for a narrow receiving antenna radiation pattern [5,6]. With

an increase in the width of the radiation pattern, the use of an explicit formula for inverse

problem solution leads to bluring of bottom objects on the sonar images.

To overcome this defect, one can solve the integral equation, for example, by dis-

cretizing the continuous problem and reducing it to solving a system of linear algebraic

equations. However, the conventional sounding method using two single-beam SSS lo-

cated on different sides of the carrier [3–7] leads to an ill-posed system of linear algebraic
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equations. The solution of the problem becomes sensitive to errors in the initial data,

and, as a result, it is impossible to obtain an image of acceptable quality of the seabed

even for slightly noisy data [7].

In this paper, we consider the case of multipath scanning when a multi-beam an-

tenna receives an echolocation signal from various angular directions. Note that a similar

measurement scheme can be implemented with a single-beam detector by increasing the

number of traverses [10].

1 Direct and inverse problems for the nonstationary radiative
transfer equation

The nonstationary radiative transfer equation is considered [1–9,11–15](
1

c

∂

∂t
+ k · ∇r + µ

)
I(r,k, t) =

σ

4π

∫
Ω

I(r,k′, t)dk′ + J(r,k, t), (1)

where r∈G⊂R3, t∈ [0,T ] and wave vector k belongs to the unit sphere Ω= {k∈R3 :

|k|=1}. The function I(r,k,t) is the energy flux density of a wave propagating in direc-

tion k with the sound speed c at the time t at the point r. The functions µ and σ are

attenuation and the scattering coefficients, and the function J describes the sources of

the sound field.

The areaG is the upper half-space bounded by the horizontal plane γ={r=(r1,r2,r3)∈
R3 : r3=−l}, l>0. We add to equation (1) the initial and boundary conditions [8, 9]

I−(r,k,t)|t<0=0, (r,k)∈G×Ω, (2)

I−(y,k,t)=
σd(y)

π

∫
Ω+

|n ·k′|I+(y,k′,t)dk′, (y,k,t)∈Γ−. (3)

In relations (2), (3) we use the notation I±(y,k,t)= lim
ε→−0

I(y±εk,k,t±ε/c),

Γ± = {(y,k, t) ∈ γ × Ω± × (0, T )}, Ω± = {k ∈ Ω : sgn(n · k) = ±1},

where n= (0,0,−1) — is the unit vector of the external normal to the boundary of

the domain G. Condition (2) means that there is no radiation in the medium at the

initial time, and the boundary condition (3) describes the diffuse reflection on the seabed

according to Lambert’s cosine law. σd(y) denotes the bottom scattering coefficient.

Let us pose a problem. Problem 1. The equation (1) with conditions (2), (3) for given

µ,σ, σd,J,c poses an initial-boundary value problem for finding an unknown function I

on the set G×Ω×(0,T ).

The well-posedness of the direct problem was considered in [9].

We will assume that the function J describes a point impulse sound source moving

at the constant speed V in the direction of the axis r2 and emitting a pulse parcels in

time moments t0,t1,... ,tm

J(r,k, t) = δ(r−Vt)

m∑
i=1

δ(t− ti), V = (0, V, 0), ti > 0,
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where δ — is the Dirac delta function. Let complete the system of relation (1)–(3)∫
Ω

Sj(k)I
+(Vt,k, t)dk = Pj(t), j = 1, . . . , q, (4)

where Sj(k) is nonzero function in subdomain Ωj ⊂Ω and denote the directivity pattern

of the receiving antenna, and q is the number of sounding tracks of the SSS.

Problem 2. Find the function σd(y) from relations (1)–(4) for given µ,σ,J(see(4)),c,

Pj ,Sj .

The inverse problem 2 has various physical applications. For example, one arises

during the acoustic sounding of the seabed by a SSS moving in a straight direction at a

constant speed V , sounding the surrounding space with pulsed signals. The carrier has

antennas that measure the total intensity Pj(t) in the sector Ωj at time moments t. If

q=2 and the sets Ω1={k∈Ω:k1<0}, Ω2={k∈Ω:k1>0}, then we are dealing with the

simplest case of the SSS containing one receiving antenna per board [4].

2 Single scattering approximation

The signal intensity Pj at the receiver point at time t in the framework of single

scattering approximation in the j-th direction can be represented as the sum of two

terms. The first corresponds to the signal reflected from the seabed (Pj,γ), the second

one is the signal scattered on the inhomogeneities of the medium (Pj,G) [3–7]:

Pj,γ(t)=
l2

π

exp(−µc(t− ti))

t− ti
×

×
2π∫
0

(
Sj

(
Vt−y−

|Vt−y|

)
σd(y−)+Sj

(
Vt−y+

|Vt−y|

)
σd(y+)

)
|sinφ|cosθidφ

|y1||y−Vti|2|Vt−y|2
=

=
l2

π

exp(−µc(t− ti))

t− ti

2π∫
0

Sj(k(φ,θi))σd(y(φ,θi))dφ

|y−Vti|2|Vt−y|2
=

=
cl2

2π

exp(−µc(t− ti))

(c(t− ti)/2)5

2π∫
0

Sj(k(φ,θi))σd(y(φ,θi)dφ. (5)

Pj,G(t) =
σc exp(−µc(t− ti))

8π(c(t− ti)/2)2

2π∫
0

π∫
θi

Sj (k(θ, φ)) sin θdθdφ. (6)

Here, θi and ϕ denote the zenith direction and the azimuth angle, respectively. And i

depends on a number of sounding track of the SSS. The point y± is defined by y± =

=(±|y1|,y2,−l).

If the radiation pattern of the receiving antenna Sj is narrowly directed in planes

perpendicular to the bottom surface r3=−l: Sj (k(θ,φ))= δ(φ−φj), where δ(φ−φj) —
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is the Dirac delta function, from formulas (5), (6) the solution to the inverse problem

can be obtained as

σd,j(y) =

(
Pj (t)−

σc exp(−2µ|y −Vt|)
8π|y −Vt|2

(
1 +

l

|y −Vt|

))(
cl2

2π

exp(−2µ|y −Vt|)
|y −Vt|5

)−1

,

where t=(y2+y1ctgφj)/V .

Obviously, with a narrowly collimated (in the angle φ) radiation pattern, to find

the bottom scattering coefficient σd it is sufficient to carry out measurements using two

receiving antennas, located on different sides of the carrier. For example, when S1 =

= δ(φ−π/2) and S2= δ(φ−3π/2). This case corresponds to the widely used method of

constructing sonar images — successively strip by strip, perpendicular to the movement

of the antenna carrier.

3 Numerical algorithm for solving the inverse problem

Solving the inverse problem forms a data set σd,j(y). The following algorithm is

applicable to construct a solution that gives the best quality of reconstruction

1. For each number j=1,...,q the functions σd,j(y) are calculated using the formulas

σd,j(y) =
(
P̂j (y)− P̂j,G(y)

)cl2c

2π

exp(−2µ
√
y21/ sin

2 φj + l2)

(y21/ sin
2 φj + l2)5/2

−1

. (7)

Here,

P̂j (y) = Pj (t) , P̂j,G (y) =
σc exp(−2µ|y −Vt|)

8π|y −Vt|2

(
1 +

l

|y −Vt|

)
.

2. The function σ̂d(y) is constructed by choosing the minimum value from the set

σd,1(y),... ,σd,q(y), i.e.
σ̂d(y) = min

j=1,...,q
σd,j(y).

With a narrow radiation pattern of receiving antennas, all functions σd,j(y) coincide

with σd(y), therefore, the function σ̂d(y) in this case also coincides with σd(y). As we

will show below in a series of computational experiments, as the width of the radiation

pattern increases, the graphic representation of the function σ̂d(y) fairly well reproduces

the structure of the areas γi.

4 Numerical experiments

To demonstrate the efficiency of the algorithm for solving the inverse problem, several

experiments are carried out. To test the algorithm we use the real data obtained from

the SSS during scanning of Zolotoi Rog bay (Vladivostok). In this experiment we use

parameters of the environment: l=12m, µ=0.018m−1, σ=0.1µ, ti+1−ti=0.4s for any i,

V = 1m/s, c= 1500m/s. Figure 1 shows data received from a side-scan sonar, here 0

corresponds to the absorbed signal, and 1 corresponds to the reflected signal relative to

the received data.
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Figure 1: Sea bottom coefficient received from the starboard SSS (reconstructed)

This image was used as a reference value for the sigma coefficient. After that, the

signal recorded by the device at different angles was simulated, which was processed

using our algorithm

Figures 2a - 2d represent functions σd,j calculated by formula (7) for φj =π/6, 4π/3,

π/2, 8π/3. The width of the radiation pattern Sj is 0.4 degrees.

a) φ1=π/6 b) φ2=4π/3

c) φ3=π/2 d) φ4=8π/3

Figure 2: Graphical representation of the bottom scattering coefficient for different an-

gular directions

To formally assess the quality of reconstruction, we calculated the following metrics:

δ2 — root mean square error, δ∞ — maximum error, MSE measures the average of the

squares of the errors, SSIM is index of structural similarity, PSNR is peak signal-to-noise

ratio.

Figure 3 shows the function σ̂d(y) reconstructed by using the focusing algorithm for

σd,j with the radiation pattern width 0.8 degrees. As can be seen in figure 3, the recon-

structed image is better than with single-beam reconstruction and the approximation

error δ2=0.217432,δ∞=0.49988.
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Table 1: Comparison of relative errors of the data shown in Fig. 2
φ δ2 δ∞ MSE SSIM PSNR

π/6 0.243301 0.588963 0.040541 0.311683 13.921056

4π/3 0.213612 0.530502 0.016385 0.426709 17.787119

π/2 0.224288 0.487163 0.014538 0.34398 18.375036

8π/3 0.218547 0.54073 0.016168 0.390694 17.879247

our method 0.217432 0.49988 0.013667 0.570349 18.609112

Figure 3: Graphical representation of the functionσ̂d(y) (processed image of the seabed)

Conclusion

In the framework of single-scattering approximation, a new method for solving the

inverse problem is proposed.

The reconstruction algorithm which includes different directions for restoration shows

acceptable result causes decreasing in the mean square error from 1 to 5 %.
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АННОТАЦИЯ

Исследуется обратная задача для нестационарного уравнения перено-
са излучения. Искомой функцией является коэффициент донного рас-
сеяния, который содержится в граничных условиях задачи. Источник
предполагается импульсным, а приемник имеет диаграмму направлен-
ности приемной антенны конечной ширины, что влияет на расфокуси-
ровку объектов при построении гидроакустического изображения. Для
решения задачи авторами предложен алгоритм многоракурсной фоку-
сировки, который был опробован на данных, полученных на основе ре-
ального изображения морского дна. Проведен анализ точности решения
обратной задачи в зависимости от ширины диаграммы направленности
приемной антенны.

Ключевые слова: уравнение переноса излучения, обратная задача, дон-
ное и объемное рассеяние, многолучевое зондирование.
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