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Focusing of hydroacoustic images based
on multiangle sounding data

In this paper we prove a convergent part of inhomogeneous Groshev type theo-
rem for non—degenerate curves in Euclidean space where an error function is not
necessarily monotonic. Our result naturally incorporates and generalizes the ho-
mogeneous measure theorem for non-degenerate curves. In particular, the method
of Inhomogeneous Transference Principle and Sprindzuk’s method of essential and
inessential domains are used in the proof.
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Introduction

In this paper, the problem of improving the quality and constructing of sonar images
of the seabed based on measurements of a side-scan sonar (SSS) is considered. It is
assumed that the carrier of the receiving-transmitting antenna, emitting a pulsed signal,
moves at a constant speed along a straight line. As a mathematical model, the equation
for the transfer of high-frequency acoustic radiation [1-4] with a boundary condition
describing diffuse reflection on the bottom surface [5-9] is used. Reconstruction of a
bottom scattering coefficient posed as an inverse problem for this model. In the framework
of the single-scattering approximation an integral equation was obtained. The equation
has an explicit solution only for a narrow receiving antenna radiation pattern [5,6]. With
an increase in the width of the radiation pattern, the use of an explicit formula for inverse
problem solution leads to bluring of bottom objects on the sonar images.

To overcome this defect, one can solve the integral equation, for example, by dis-
cretizing the continuous problem and reducing it to solving a system of linear algebraic
equations. However, the conventional sounding method using two single-beam SSS lo-
cated on different sides of the carrier [3-7] leads to an ill-posed system of linear algebraic
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equations. The solution of the problem becomes sensitive to errors in the initial data,
and, as a result, it is impossible to obtain an image of acceptable quality of the seabed
even for slightly noisy data [7].

In this paper, we consider the case of multipath scanning when a multi-beam an-
tenna receives an echolocation signal from various angular directions. Note that a similar
measurement scheme can be implemented with a single-beam detector by increasing the
number of traverses [10].

1 Direct and inverse problems for the nonstationary radiative
transfer equation

The nonstationary radiative transfer equation is considered [1-9,11-15]

(igt +k-V, + u) I(r,k,t) = % /I(r,k’,t)dk’ + J(r,k, t), (1)
where r € G CR3, t€[0,T] and wave vector k belongs to the unit sphere Q= {k € R3:
|k|=1}. The function I(r,k,t) is the energy flux density of a wave propagating in direc-
tion k with the sound speed c at the time ¢ at the point r. The functions p and o are
attenuation and the scattering coefficients, and the function J describes the sources of
the sound field.

The area G is the upper half-space bounded by the horizontal plane y={r=(ry,r2,r3) €
R3:r3=—1}, 1>0. We add to equation (1) the initial and boundary conditions [8,9]

Ii(rvkat)|t<0:07 (I‘,k)EGXQ, (2)
=" [k rom,  acner Q
Qp

In relations (2), (3) we use the notation I*(y,k,t)= limOI(yisk,k,t:tg/c),
e——

Fi = {(Y7ka t) €7 X Oy x (OvT)}a Q= {k € Sgn(n ’ k) - :I:l}v

where n=(0,0,—1) — is the unit vector of the external normal to the boundary of
the domain G. Condition (2) means that there is no radiation in the medium at the
initial time, and the boundary condition (3) describes the diffuse reflection on the seabed
according to Lambert’s cosine law. o4(y) denotes the bottom scattering coefficient.

Let us pose a problem. Problem 1. The equation (1) with conditions (2), (3) for given
w,0, 04,J,c poses an initial-boundary value problem for finding an unknown function
on the set GxQx (0,T).

The well-posedness of the direct problem was considered in [9].

We will assume that the function J describes a point impulse sound source moving
at the constant speed V' in the direction of the axis ro and emitting a pulse parcels in
time moments tg,t1,...,tm

m
J(r k) =08(r=Vt)Y 6(t—t), V=(0,V,0), >0,

i=1
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where § — is the Dirac delta function. Let complete the system of relation (1)—(3)

/s (Vi k, t)dk = P;(t), j=1,....q, (4)

where S, (k) is nonzero function in subdomain Q; C Q and denote the directivity pattern
of the receiving antenna, and q is the number of sounding tracks of the SSS.

Problem 2. Find the function o4(y) from relations (1)—(4) for given u,o,J(see(4)),c,
Pj,S;.

The inverse problem 2 has various physical applications. For example, one arises
during the acoustic sounding of the seabed by a SSS moving in a straight direction at a
constant speed V', sounding the surrounding space with pulsed signals. The carrier has
antennas that measure the total intensity P;(t) in the sector ; at time moments ¢. If
g=2 and the sets Q; ={k€Q:k <0}, Qo ={ke€Q:k; >0}, then we are dealing with the
simplest case of the SSS containing one receiving antenna per board [4].

2 Single scattering approximation

The signal intensity P; at the receiver point at time ¢ in the framework of single
scattering approximation in the j-th direction can be represented as the sum of two
terms. The first corresponds to the signal reflected from the seabed (P; ), the second
one is the signal scattered on the inhomogeneities of the medium (P} ) [3-7]:

P exp(—pe(t— 1))
P (t) = = =& X

Vi—y_ Vi—y, .
27 o — T 3 10
X/ <S] <|Vt—y)a (y-)+5; (|Vt |)0d(y+)) |siny|cosb;dp

lyilly = V|2Vt —y|?

0

_ Pexp(—pc(t—t)) 75]'(k(@ﬁi))ffd(}’(%@i))d@ _

™ t—t; ly -Vt [Vi—y?

:;%/5 (¢,0:))aa(y(p,0:)de.  (5)

2w

acexp
Pia(t) = Sr(cl t—t /2 // )) sin 0dOdp. (6)

Here, 6; and ¢ denote the zenith direction and the azimuth angle, respectively. And ¢
depends on a number of sounding track of the SSS. The point y. is defined by y+ =
= (Ely1l,92,-1).

If the radiation pattern of the receiving antenna .S; is narrowly directed in planes
perpendicular to the bottom surface 73 =—1: S (k(6,¢)) =06(¢—¢;), where (¢ —p;) —
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is the Dirac delta function, from formulas (5), (6) the solution to the inverse problem
can be obtained as

geexp(—2uly — Vi|) (1 Ll )) <cz2 exp(—2puly — Vt|)>_1’

. = (P @) = -
73() <J() 8rly — Vi[? y-vi[))\2x Jy- Vi

where t = (y2 +yictgp;)/V.

Obviously, with a narrowly collimated (in the angle ¢) radiation pattern, to find
the bottom scattering coefficient o4 it is sufficient to carry out measurements using two
receiving antennas, located on different sides of the carrier. For example, when S; =
=0(¢—m/2) and Sy =06(p —37/2). This case corresponds to the widely used method of
constructing sonar images — successively strip by strip, perpendicular to the movement
of the antenna carrier.

3 Numerical algorithm for solving the inverse problem

Solving the inverse problem forms a data set o4 ;(y). The following algorithm is
applicable to construct a solution that gives the best quality of reconstruction
1. For each number j=1,...,q the functions o4 ;(y) are calculated using the formulas

—1
~ . cl2c exp(—2 2/sin” p; + 12
ras) = (P (3) - Proty) Lo SPMVAI e 2B g

or (y%/sin2 ; +12)5/2

Here,

_ocexp(—2uly — Vi) 1+ l
N 8|y — Vi|? ly —Vit| )~

2. The function 4(y) is constructed by choosing the minimum value from the set

04,1(¥), - 0d,q(y), Le. R .
oa(y) = min o4;(y).
Jj=1,..,q9

With a narrow radiation pattern of receiving antennas, all functions o4 ;(y) coincide
with o4(y), therefore, the function c4(y) in this case also coincides with o4(y). As we
will show below in a series of computational experiments, as the width of the radiation
pattern increases, the graphic representation of the function 4(y) fairly well reproduces
the structure of the areas ;.

4 Numerical experiments

To demonstrate the efficiency of the algorithm for solving the inverse problem, several
experiments are carried out. To test the algorithm we use the real data obtained from
the SSS during scanning of Zolotoi Rog bay (Vladivostok). In this experiment we use
parameters of the environment: [=12m, ©=0.018m™!, 6 =0.1y, ;41 —t; =0.4s for any 1,
V =1m/s, ¢=1500m/s. Figure 1 shows data received from a side-scan sonar, here 0
corresponds to the absorbed signal, and 1 corresponds to the reflected signal relative to
the received data.
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Figure 1: Sea bottom coefficient received from the starboard SSS (reconstructed)

This image was used as a reference value for the sigma coefficient. After that, the
signal recorded by the device at different angles was simulated, which was processed
using our algorithm

Figures 2a - 2d represent functions o4 ; calculated by formula (7) for ¢; =m/6,4m/3,
7/2,8m/3. The width of the radiation pattern S; is 0.4 degrees.

c) p3=m/2 d) oy =87/3

Figure 2: Graphical representation of the bottom scattering coefficient for different an-
gular directions

To formally assess the quality of reconstruction, we calculated the following metrics:
d2 — root mean square error, o, — maximum error, MSE measures the average of the
squares of the errors, SSIM is index of structural similarity, PSNR is peak signal-to-noise
ratio.

Figure 3 shows the function o4(y) reconstructed by using the focusing algorithm for
04,5 With the radiation pattern width 0.8 degrees. As can be seen in figure 3, the recon-

structed image is better than with single-beam reconstruction and the approximation
error 0, =0.217432,,, =0.49988.
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Table 1: Comparison of relative errors of the data shown in Fig. 2

v 5 Soo MSE SSIM PSNR
/6 0.243301 | 0.588963 | 0.040541 | 0.311683 | 13.921056
in/3 0.213612 | 0.530502 | 0.016385 | 0.426709 | 17.787119
/2 0.224288 | 0.487163 | 0.014538 | 0.34398 | 18.375036
87/3 0.218547 | 0.54073 | 0.016168 | 0.390694 | 17.879247

our method | 0.217432 | 0.49988 | 0.013667 | 0.570349 | 18.609112

Figure 3: Graphical representation of the functiongy(y) (processed image of the seabed)

Conclusion

In the framework of single-scattering approximation, a new method for solving the
inverse problem is proposed.

The reconstruction algorithm which includes different directions for restoration shows
acceptable result causes decreasing in the mean square error from 1 to 5 %.
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AHHOTAIINS

Wccnemyercss obparnas 3ajada Uil HECTAIMOHAPHOIO YPABHEHUSI [IE€PEHO-
ca mamyuenns. Vckomoit pyukmei sBisercss Ko3(pOUIIMEHT TOHHOTO pac-
CestHUsI, KOTOPBII COMEPKUTCH B TPAHUYIHBIX YCJIOBHUSX 3aja4u. Vcroanmk
[IPE/IITOIAraeTC UMILYJIbCHBIM, & IPUEMHUK UMEeT [harpaMMy HAIPaBJICH-
HOCTHU IIPUEMHON aHTEeHHBI KOHEYHON IIMPUHBI, YTO BJIMAET Ha PacqOKyCHU-
POBKY OOBEKTOB IIPH MTOCTPOEHUN THAPOAKYCTHIECKOT0 n3obparkeHust. s
peleHns 3aa9i aBTOPAMU IPEJIOKEH aJITOPUTM MHOTOPaKypPCHO# (DOKy-
CHPOBKH, KOTOPBIH ObLT OMPOOOBAH HA TAHHBIX, [OJIYI€HHBIX HA OCHOBE pe-
AJIBHOI'O N300pakeHust MOPCKOro JHa. [IpoBejieH aHA/IM3 TOYHOCTH PeIeHNsT
00paTHOI 381241 B 32BUCUMOCTH OT IIIUPUHBI JMATPAMMbBI HAIIPABJIEHHOCTH
IPUEMHOII aHTEHHEI.

Kurouesnie ciioBa: ypasuenue nepenoca udayuernus, oopamuas 3adava, 0oH-
HOE U 00BEMHOE PACCEAHUE, MHO20AYHEB0E 30HAUPOBAHUE.
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