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Boundary control problems for nonlinear

reaction-diffusion-convection model

The solvability of the boundary control problem for a nonlinear model of mass
transfer is proven in the case, when the reaction coefficient depends nonlinearly on
concentration of substance and depends on spatial variables. The role of the control
is played by the concentration value specified on the entire boundary of the domain.
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Introduction. Statement of boundary value problem

During a long period of time an interest in the study of boundary and extremum prob-

lems for heat and mass transfer equations has only increased (see, for example, [1–10]).

Together with the search for the effective mechanisms for controlling physical fields in

continuous media control problems have a number of other applications. Within the

framework of the optimization approach these problems are reduced to some inverse

problems (for the correctness of this approach, see [8, 11]).

In this paper we study the boundary control problem for the following mass transfer

model considered in bounded domain Ω ⊂ R3 with boundary Γ:

−ν∆u+ (u · ∇)u+∇p = f + βGφ, divu = 0 in Ω, (1)

−div(λ(x)∇φ) + u · ∇φ+ k(φ,x)φ = f in Ω, (2)

u = 0, φ = ψ on Γ. (3)

Here u is a velocity vector, function φ represents concentration of the pollutant, p =

P/ρ, where P is pressure, ρ = const is fluid density, ν = const > 0 is constant kinematic

viscosity, λ = λ(x) > 0 is a diffusion coefficient, β is a coefficient of mass expansion,

G = −(0, 0, G) is acceleration of gravity, f and f are volume densities of external forces
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and external sources of substance, respectively. Finally, the function k = k(φ,x) is a

reaction coefficient, where x ∈ Ω. Below we will refer to the problem (1)–(3) for given

functions f , f, λ, β, k and ψ as to Problem 1.

The global solvability of the Problem 1 and the local uniqueness of its solution are

proven in [12]. The current article contains the solvability of the boundary control prob-

lem, in which the role of control is played by the function ψ from the boundary condition

(3). Also we should bear in mind that the papers [9,13,14] are generalizing the Boussinesq

approximation for various models, while the papers [15–17] are dedicated to the study a

number of complicated hydrodynamic models.

1 Solvability of boundary value problem

Further we will use Sobolev functional spaces Hs(D), s ∈ R. Here D has the sense of

either a domain Ω or of some subset Q ⊂ Ω, or of the boundary Γ. By ∥ · ∥s,Q, | · |s,Q
and by (·, ·)s,Q we will denote the norm, the seminorm and the scalar product in Hs(Q),

respectively. ∥ · ∥Q and (·, ·)Q stand for the norm and the scalar product in L2(Q),

correspondingly, and (·, ·) ≡ (·, ·)Ω. Let us introduce L2
0(Ω) = {h ∈ L2(Ω) : (h, 1) = 0},

V = {v ∈ H1
0 (Ω)

3 : divv = 0 in Ω}, Lp+(D) = {k ∈ Lp(D) : k ≥ 0}, p ≥ 5/3,

and L∞
λ0
(Ω) = {λ ∈ L∞(Ω) : λ ≥ λ0 > 0} and also present the product of spaces

H = H1
0 (Ω)

3×H1
0 (Ω),W = V ×H1

0 (Ω) and the functional spaceH∗ = H−1(Ω)3×H−1(Ω)

which is dual to H.

Let the following conditions hold:

(i) Ω is a bounded domain in R3 with a boundary Γ ∈ C0,1;

(ii) λ ∈ L∞
λ0
(Ω), f ∈ L2(Ω)3, f ∈ L2(Ω), b = βG ∈ L2(Ω)3, ψ ∈ H1/2(Γ);

(iii) for any function w ∈ H1(Ω) the embedding k(w, ·) ∈ Lp+(Ω) is true for some

p ≥ 5/3, where p does not depend on w; and on any ball Br = {w ∈ H1(Ω) : ∥w∥1,Ω ≤ r}
of radius r the following inequality takes place:

∥k(w1, ·)− k(w2, ·)∥Lp(Ω) ≤ L∥w1 − w2∥L4(Ω) ∀w1, w2 ∈ H1(Ω).

Here L is a constant which depends on r, but does not depend on w1, w2 ∈ Br.

(iv) the nonlinearity k(φ, ·)φ is monotone in the following sense:

(k(φ1, ·)φ1 − k(φ2, ·)φ2, φ1 − φ2) ≥ 0 ∀φ1, φ2 ∈ H1(Ω).

(v) the function k(φ, ·) is bounded in the sense that there exist a positive constants

A1, B1 which depend on k, such that ∥k(φ, ·)∥Lp(Ω2) ≤ A1∥φ∥t1,Ω +B1, p ≥ 5/3, t ≥ 0.

The following lemmas hold (see [18]).

Lemma 1. Under the conditions (i), k0 ∈ Lp+(Ω), p ≥ 5/3, u ∈ H1(Ω)3, divu = 0,

b ∈ L2(Ω)3, λ ∈ L∞
λ0
(Ω), there exist positive constants C1, δ0, δ1, γ1, γ2, γ

′
2, γp, β1, which

depend on Ω or on Ω and p, and there is also a constant β0 which depends on ∥b∥Ω, such
that the following relations are satisfied: |(bh,w)| ≤ β0∥h∥1,Ω∥w∥1,Ω and

|((w · ∇)h, z)| ≤ γ1∥w∥1,Ω∥h∥1,Ω∥z∥1,Ω ∀w,h, z ∈ H1(Ω)3, h ∈ H1(Ω), (4)

sup
v∈H1

0 (Ω)3,v ̸=0

−(divv, p)/∥v∥1,Ω ≥ β1∥p∥Ω ∀p ∈ L2
0(Ω), (5)
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|(λ∇h,∇η)| ≤ C1∥λ∥s,Ω∥h∥1,Ω∥η∥1,Ω, |(k0h, η)| ≤ γp∥k0∥Lp(Ω)∥h∥1,Ω∥η∥1,Ω,
|(u · ∇h, η)| ≤ γ′2∥u∥L4(Ω)3∥h∥1,Ω∥η∥1,Ω ≤ γ2∥u∥1,Ω∥h∥1,Ω∥η∥1,Ω ∀h, η ∈ H1(Ω),

ν(∇v,∇v) ≥ ν∗∥v∥21,Ω, ∀v ∈ H1
0 (Ω)

3, (λ∇h,∇h) ≥ λ∗∥h∥21,Ω ∀h ∈ H1
0 (Ω),

where ν∗ = νδ0 and λ∗ = λδ1.

Lemma 2. Let the condition (i) hold. Then there exists a family of continuous non-

decreasing functions Mε : R+ ≡ [0,∞) → R+, Mε(0) = 0, which depends on the pa-

rameter ε ∈ (0, 1] as well as on Ω and on Γ, such that for any non identically zero

function ψ ∈ H1/2(Γ) there is a function φε ∈ H1(Ω), satisfying the conditions φ|Γ = ψ,

∥φε∥L4(Ω) ≤ ε, ∥φε∥1,Ω ≤Mε(∥ψ∥1/2,Γ) for all ε ∈ (0, 1].

Let us multiply the first equation in (1) by a function v ∈ H1
0 (Ω)

3, the equation (2)

by a function h ∈ H1
0 (Ω) and integrate over Ω with the help of the Green’s formulae.

Thus, we are obtaining the weak formulation of the Problem 1:

ν(∇u,∇v) + ((u · ∇)u,v)− (p,divv) = (f ,v) + (bφ,v) ∀v ∈ H1
0 (Ω)

3, (6)

(λ∇φ,∇h) + (k(φ, ·)φ, h) + (u · ∇φ, h) = (f, h) ∀h ∈ H1
0 (Ω), (7)

divu = 0 in Ω, φ = ψ on Γ. (8)

The triple (u, φ, p) ∈ H1
0 (Ω)

3 × H1(Ω) × L2
0(Ω) which satisfies (6)–(8) will be called a

weak solution of the Problem 1.

The following theorem takes place (see [12]).

Theorem 1. Let us assume that the assumptions (i)–(v) hold. Then there exists a weak

solution (u, φ, p) ∈ H1
0 (Ω)

3×H1(Ω)×L2
0(Ω) of the Problem 1 and the following estimates

are true:

∥u∥1,Ω ≤Mu ≡ (β0/(ν∗λ∗))Mf1 + (1/ν∗)∥f∥Ω, (9)

∥φ∥1,Ω ≤Mφ ≡ (2/λ∗)(γ
′
2Mu +Mf1) +Mε(∥ψ∥1/2,Γ), ε = ν∗λ∗/(2β0γ

′
2), (10)

∥p∥Ω ≤Mp ≡ β−1
2 [(ν + γ1Mu)Mu + ∥f∥Ω + β0Mφ], β2 = β1 − δ, δ > 0, (11)

whereMf1 = ∥f∥Ω+C1∥λ∥L∞(Ω)Mε(∥ψ∥1/2,Γ)+γp(A1M
t
ε(∥ψ∥1/2,Γ)+B1)Mε(∥ψ∥1/2,Γ).

If, besides, the condition Re+Ra < 1 takes place, where Re = (γ1/δ0ν)Mu and Ra =

(γ2/δ0ν)(β0/δ1λ)Mφ are dimensionless analogues of Reynolds number and of diffusion

Rayleigh number (see [18, ch. 5]), then the weak solution of the Problem 1 is unique.

2 Statement and solvability of control problem

In this section we will study a boundary control problem for the system (1)–(3), in which

the role of the control is played by a boundary function ψ. We assume that ψ can be

changed in a subset K, which satisfies the following condition:

(j) K ⊂ H1/2(Γ) and is a nonempty convex closed set.

Let us define functional spaces X = H1
0 (Ω)

3 × H1(Ω) × L2
0(Ω), Y = H−1(Ω)3 ×

H1(Ω)∗ × L2
0(Ω) × H1/2(Γ) and set x = (u, φ, p) ∈ X and introduce an operator F =

(F1, F2, F3) : X×K → Y by formulae ⟨F1(x, ψ), (v, h)⟩ = ν(∇u,∇v)+(λ∇φ,∇h)+((u ·



Boundary control problems for nonlinear reaction-diffusion-convection model 109

∇)u,v)− (p,divv)+ (k(φ, ·)φ, h)+ (u · ∇φ, h)− (f ,v)− (bφ,v)− (f, h), ⟨F2(x, ψ), r⟩ =
−(divu, r), F3(x, ψ) = φ|Γ − ψ ∈ H1/2(Γ). Further we will rewrite a weak form (6)–(8)

of the Problem 1 in the form of the operator equation F (x, ψ) = 0.

Let I : X → R be a weakly lower semicontinuous functional. Let us consider the

following multiplicative control problem:

J(x, ψ) ≡ (µ0/2)I(x) + (µ1/2)∥ψ∥21/2,Γ → inf, F (x, ψ) = 0, (x, ψ) ∈ X ×K. (12)

The set of admissible pairs for the problem (12) is denoted by Zad = {(x, ψ) ∈ X×K :

F (x, ψ) = 0, J(x, ψ) <∞}. Let, in addition to (j), the following condition holds:

(jj) µ0 > 0, µ1 ≥ 0 and K is a bounded set in H1/2(Γ) or µi > 0, i = 0, 1 and the

functional I is bounded from below.

We use the following cost functionals [18]:

I1(φ) = ∥φ−φd∥2Q, I2(φ) = ∥φ−φd∥21,Q, I3(u) = ∥u−ud∥2Q, I4(p) = ∥p− pd∥2Q. (13)

Here the function φd ∈ L2(Q) (or φd ∈ H1(Q)) denotes a desired concentration field,

which is given in a subdomain Q ⊂ Ω. Functions ud and pd have a similar sense for either

a velocity field or pressure.

Theorem 2. Assume that the conditions (i)–(v) and (j), (jj) take place. Let I : X → R
be a weakly semicontinuous below functional and let Zad ̸= 0. Then there is at least one

solution (x, ψ) ∈ X ×K of the control problem (12).

P r o o f. Let (xm, ψm) = (um, φm, pm, ψm) ∈ Zad be a minimizing sequence for which

the following is true: limm→∞ J(xm, ψm) = inf(x,ψ)∈Zad
J(x, ψ) ≡ J∗.

From the condition (jj) and from Theorem 1 it can be deduced that the following

estimates hold:

∥ψm∥1/2,Γ ≤ c1, ∥um∥1,Ω ≤ c2, ∥φm∥1,Ω ≤ c3, ∥pm∥Ω ≤ c4, (14)

where the constants c1, c2, . . . don’t depend on m. From the estimate (14) and from the

condition (j) it follows that there exist weak limits ψ∗ ∈ K, u∗ ∈ H1
0 (Ω)

3, φ∗ ∈ H1(Ω),

p∗ ∈ L2
0(Ω) of some subsequences of sequences {ψm}, {um}, {φm}, {pm}, respectively.

With this in mind, it can be considered that, as m→ ∞, we have

um → u∗ weakly in H1(Ω)3 and strongly in Lp(Ω)3, p < 6,

φm → φ∗ weakly in H1(Ω) and strongly in Ls(Ω), s < 6,

pm → p∗ weakly in L2(Ω),

ψm → ψ∗ on Γ weakly in H1/2(Γ) and strongly in Ls(Γ), s < 4. (15)

It is clear that F2(x
∗, ψ) = 0, F3(x

∗) = 0. Let us show that F1(x
∗, ψ∗) = 0, i.e. that

ν(∇u∗,∇v) + (λ∇φ∗,∇h) + ((u∗ · ∇)u∗,v)− (p∗,divv) + (k(φ∗, ·)φ∗, h)+

+(u∗ · ∇φ∗, h) = (f ,v) + (bφ∗,v) + (f, h) ∀(v, h) ∈ H.
(16)
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Let us also remind that (xm, ψm) satisfies the relation

ν(∇um,∇v) + (λ∇φm,∇h) + ((um · ∇)um,v)− (pm,divv) + (k(φm, ·)φm, h)+
+(um · ∇φm, h) = (f ,v) + (bφm,v) + (f, h) ∀(v, h) ∈ H.

(17)

Let us pass to the limit in (17) as m → ∞. From (15) it follows that all linear terms in

(17) turn into corresponding ones in (16). Let us consider the nonlinear terms, starting

with (k(φm, ·)φm, h). From the condition (iii) it follows that k(φm, ·) → k(φ∗, ·) strongly
in L3/2(Ω) as m → ∞. It is not difficult to show that from (15) a weak convergence

φmh → φ∗h in L3(Ω) for all h ∈ H1
0 (Ω) follows. Then k(φm, ·)φmh → k(φ∗, ·)φ∗h

strongly in L1(Ω) or (k(φm, ·)φm, h) → (k(φ∗, ·)φ∗, h) as m→ ∞ for all h ∈ H1
0 (Ω).

Arguing as in [9], we show that ((um · ∇)um,v) → ((u∗ · ∇)u∗,v) as m→ ∞ for all

v ∈ H1
0 (Ω)

3 and (um · ∇φm, h) → (u∗ · ∇φ∗, h) as m→ ∞ for all h ∈ H1
0 (Ω).

As the functional J is weakly semicontinuous below on X ×H1/2(Γ), then from (14)

it follows that J(x∗, ψ∗) = J∗. 2
Remark 1. It is clear that all cost functionals from (13) satisfy the conditions of the

Theorem 2.
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АННОТАЦИЯ

Доказана разрешимость задачи граничного управления для нелинейной
модели массопереноса в случае, когда коэффициент реакции нелинейно
зависит от концентрации вещества, а также зависит от пространствен-
ных переменных. Роль управления играет значение концентрации, за-
данное на всей границе области.

Ключевые слова: нелинейная модель массопереноса, обобщенная модель
Буссинеска, коэффициент реакции, задача граничного управления.


