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An extrapolation method for improving the

linearity of CT-values in X-ray pulsed

tomography

This paper proposes an approach for improving the quality of the attenuation coef-
ficient reconstruction using medium irradiation with X-ray pulses of various dura-
tions. We propose a new scheme of tomographic scanning that makes it possible to
reduce the contribution of the scattered component to the projection data by con-
structing an extrapolation approximation for a ballistic term of a radiative transfer
equation solution. Numerical experiments were carried out on a specially designed
digital phantom.
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Conventionally, for numerical evaluation of attenuation coefficient in tomographic im-

ages Hounsfield units are used. The Hounsfield units (HU) are obtained from a linear

transformation of the measured attenuation coefficients that is based on the arbitrarily-

assigned densities of air and pure water [1]. For reliable and reproducible treatment

planning, an accurate representation of different tissues by the Hounsfield scale is rec-

ommended. Identical values for scans obtained from different tomographic scanners are

desirable. However, the presence of scattering in the medium leads to the fact that the

aforementioned linear relationship is not fulfilled. As a result, inclusions of the same

material can give different values in the Hounsfield units, depending on the its location

within the medium. This problem is especially acute in the dental cone beam computed

tomography [2, 3]. Thereby, the HU linearity is an essential parameter in a quantitative

imaging and the treatment planning systems of radiotherapy.
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This study proposes a method that allows one to improve the linearity of the CT-

values by the means of more accurate evaluation of the numerical values of the attenuation

coefficient.

We propose a new scheme of tomographic scanning, which makes it possible to reduce

the contribution of a scattered component into the projection data with decreasing pulse

width of the incident radiation. As a result, in the theoretical terms, we can determine

the ballistic component of the signal.

For the practical use of this approach, we build an extrapolation approximation of the

ballistic component of the signal by irradiating the medium with a series of pulses with

different durations. Finding the attenuation coefficient from a known ballistic component

is a well-studied problem of Radon transform inversion [4]. We approve the approach

proposed in numerical experiments with a specially designed digital phantom.

1 Statement of the inverse problem

Let us consider the following integro-differential radiation transfer equation [5, 6](
1

c

∂

∂t
+ ω · ∇r + µ(r)

)
I(r, ω, t) = σ(r)

∫
Ω

p(r, ω · ω′)I(r, ω′, t)dω′, (1)

where I(r, ω, t) is the radiation flux density at the point r ∈ G ⊂ R3, in the direction

ω ∈ Ω = {ω ∈ R3 : |ω| = 1}

at the time instant t ∈ [0, T ], µ is the attenuation factor, σ is the scattering coefficient,

c is the velocity of photons, and p is the scattering phase function.

Let an irradiated object be entirely contained within a cylinder of diameter d. Let Πω

be a plain tangent to the boundary of the domain G and perpendicular to the direction ω,

Πω = {r ∈ R3 : r · ω = d/2}.

We assume that the medium is irradiated with a series of pulses depending in the direction

ω∗ ∈ Ω∗ = {ω = (ω1, ω2, ω3) ∈ Ω : ω3 = 0}.

The object scanning is carried out by synchronous rotation of planes with the radiation

sources Π−ω∗ and the detectors Π+ω∗ . We will use the following notation:

X = G× Ω× [0, T ], X0 = G× Ω× {t = 0}, Ω−ω∗ = {ω ∈ Ω : −ω∗ · ω > 0},
Y − = Π−ω∗ × Ω−ω∗ × [0, T ], X− = Y − ∪X0.

Let us introduce the function

h(z, ω, t) =

{
0, (z, ω, t) ∈ X0,

hext(z, ω, t), (z, ω, t) ∈ Y −,
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and supplement equation (1) with the unified initial-boundary condition:

I|X− = h(r, ω, t). (2)

For brevity we will omit the parametric dependence of a direct problem solution in the

ω∗ direction.

The serial irradiation is proposed to be dependent on the direction ω∗ and described

by square impulses with the pulse duration δ

h(ξ, ω, t) =

{
1/δ, (ξ, ω, t) ∈ Π−ω∗ × Ω−ω∗ × (0, δ),

0, (ξ, ω, t) 6∈ Π−ω∗ × Ω−ω∗ × (0, δ).
.

From the physical point of view, such a definition of radiation source restricts only the

pulse duration without assuming collimation or spatial localization of radiation sources,

which are often used in tomography to suppress the scattering effects in a medium.

We investigate the following inverse problem.

The problem is to find the function µ from (1), (2) with the additional condition

d/c+δ∫
d/c

I(η, ω∗, t)dt = H(η, ω∗), (η, ω∗) ∈ Πω∗ × Ω∗, (3)

where c, d, δ, h,H are given.

Thus, to find the attenuation coefficient, only the averaged values of the flux density

are needed over the interval equal to the pulse width shifted by the travel time of the

ballistic leaving the probed signal from the source to the receiver, which somewhat reduces

the requirements for the temporal resolution of the detectors.

2 Estimation of the scattered radiation contribution. The pro-
jection data extrapolation procedure

To construct a method for solving the problem, we estimate the contribution of the

scattered radiation to the total radiation flux depending on a probe pulse width. In the

paper we take into account only a single scattering approximation. In this framework the

direct problem solution can be represented as a sum of ballistic and scattered components

I(η, ω∗, t) = I0(η, ω∗, t) + I1(η, ω∗, t), η ∈ Πω∗ .

Here I0 means the ballistic term, and I1 denotes the single scattered one.

The following estimations are valid

d/c+δ∫
d/c

I0(η, ω∗, t)dt = exp

− d∫
0

µ(η − τω)dτ

 ,

d/c+δ∫
d/c

I1(η, ω∗, t)dt ≤ const

(
1 + ε ln

∣∣∣∣1 +
1

ε

∣∣∣∣− 1

ε
ln |1 + ε|

)
,
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where ε(δ) = cδ/d.

The latter inequality shows that the integral of the scattered term tends to zero

with a lower pulse duration. In this case the integral of the ballistic component gives an

exponential law of attenuation like the case of a medium without scattering.

Let a medium be irradiated with two sources of different durations δ1 and δ2 and

H(δ1), H(δ2) are corresponding outgoing radiation fluxes. With a single scattering ap-

proximation we can write down

H(ε) =

d(1+ε)/c∫
d/c

I(η, ω∗, t, ε)dt = exp

− d∫
0

µ(η − τω∗)dτ

+ CΦ(ε),

where
Φ(ε) =

(
1 + ε ln

∣∣∣∣1 +
1

ε

∣∣∣∣− 1

ε
ln |1 + ε|

)
.

This equation allows us to express the Radon ray transform of the function µ based on

the corresponding output signals,

exp

− d∫
0

µ(η − τω∗)dτ

 = H(ε1)− H(ε1)−H(ε2)

Φ(ε1)− Φ(ε2)
H(ε1). (4)

The inverse problem solution reduces to the inversion of the Radon transform

d∫
0

µ(η − τω∗)dτ = − ln

∣∣∣∣H(ε1)− H(ε1)−H(ε2)

Φ(ε1)− Φ(ε2)
Φ(ε1)

∣∣∣∣ .
To find the function µ, the wide-known convolution and back projection algorithm, can

be used.

3 Numerical experiments and discussion

To test the method, we use the specially developed digital phantom. It is a cylinder with

a radius of 10 cm and height of 10 cm, filled with water-equivalent base material (HU=0).

The phantom contains cylindrical inclusions with diameter of 0.6 cm and a height of 10

cm, with given values of the attenuation coefficient in the Hounsfield units.

The inclusions contain materials with the following attenuation coefficient values:

–1000HU, –600HU, –100HU, 300HU, 500HU and 2100HU which correspond to the most

basic materials encountered in the dental cone beam tomography. The centers of the

inclusions are located at concentric circles at different distances from the center of the

phantom in order to evaluate the effects of the inclusion location on the accuracy of CT-

values reconstruction. A lateral crossection of phantom is shown schematically in Fig.

1a.

To describe the serial irradiation of the medium, we used a pulsed source depending on

the direction ω∗ with pulse durations of 200 and 300 picoseconds (δ1 = 300, δ2 = 200).
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(a) (b)

(c) (d)

Fig. 1: Digital phantom: (a) – lateral crossection; (b), (c) – reconstruction from the

“raw” data corresponding to pulse durations of 200ps and 300ps; (d) – reconstruction

from extrapolated data.

Fig. 2: Comparison of HU values reconstructed from “raw” and extrapolated data was

conducted for different inclusion locations. Dotted line corresponding to the outer inclu-

sions and solid line to the inner one.
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We calculate output radiation profiles for given parameters of the medium and pulse

durations using Monte Carlo method [5]. In our numerical experiments, we simulate a

tomographic scanner with a data acquisition system consisting of 200 angular projections,

each of which includes data from 101 detectors.

At the next step we correct the projection data using formula (4) and find the atten-

uation coefficient using the convolution and back projection method [4]. To control the

quality improvement, a similar procedure was carried out for the projection data without

correction. The phantom images reconstructed using the “raw” and extrapolated data

are presented in Figure 1 b-c. It appears visually that the contrast of the tomogramm

reconstructed from extrapolated data is significantly higher than on the “raw” data one.

Linearity of the CT-values was obtained from making a graph between reconstructed

HU values vs referenced one. The comparison of CT-values linearity between images re-

constructed using “raw” and corrected data for different inclusion locations are shown in

Figure 2. The solid lines correspond to inclusions located near the phantom boundary,

and a dotted lines to the inclusions located closer to the center one. It appears that the

CT-values found from the corrected projection data gives a better linearity regardless of

the inclusion location. It should be noted that the approach proposed uses a potentially

unstable extrapolation procedure, so it is highly demanding of the accuracy of the mea-

sured data. In the results of the numerical experiments given above, a relative error in

simulated outgoing radiation measurements did not exceed 1 %. At this level of error, the

approach proposed gives good results. The results of additional numerical experiments

have shown that with an increase in an error, the instability in the method proposed may

cause artifacts on tomograms.
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АННОТАЦИЯ

В работе предложен подход, повышающий качество реконструкции ко-
эффициента ослабления путем облучения среды импульсами различной
длительности. Новая схема томографического сканирования позволяет
уменьшить вклад рассеянной составляющей в проекционные данные с
помощью построения экстраполяционного приближения решения урав-
нения переноса излучения. Проведено численное тестирование на спе-
циальном цифровом фантоме.

Ключевые слова: томография, экстраполяция, подавление рассеяния.
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