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On the problem of determining the

scattering coefficient in frequency modulated

sounding of a medium

Within the framework of the kinetic model of the transfer of linear frequency mod-
ulated radiation in a scattering medium, an inverse problem is formulated, which
consists in determining the volume scattering coefficient of sound. Additional infor-
mation in the problem is the frequency-averaged angular distribution of the radi-
ation flux density at a given point in space. An analytical solution of the inverse
problem is obtained in the single scattering approximation.
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In the papers [1, 2] the problem of finding the scattering coefficient for the non-

stationary radiation transfer equation with a pulse radiation source in a heterogeneous

medium is studied. The applicability of the single scattering approximation for solving

the inverse problem in two-dimensional and three-dimensional cases is examined.

For the processes of acoustic sounding of the ocean it is necessary for the signal

strength/noise ratio to be greater than one [3]. A simple way to increase this ratio is

for the source to emit a stronger pulse. However, this approach isn’t always feasible to

implement [3]. Because of this the only way to increase the amount of energy released is

to make the pulse longer. An acceptable time-resolution can be achieved by making the

frequency band wider, so it is possible to change the frequency during the pulse to study

a long and wideband signal. In this paper we examine the case of a chirp signal source.

An inverse problem for the non-stationary radiation transfer equation with a chirp signal

source will be formulated and an explicit formula for the scattering coefficient using

single-scattering approximation will be found.
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1 Formulation of an inverse problems for the equation of transfer
of frequency modulated radiation

The non-stationary process of high-frequency wave fields spreading in an isotropically

scattering medium can be described using the integro-differential radiation transfer equa-

tion [4–7] which has the following form in the two-dimensional case:

1

c

∂I

∂t
+ k · ∇rI(r,k, t, ν) + µI(r,k, t, ν) =

σ(r)

2π

∫
Ω

I(r,k′, t, ν)dk′ + J(r,k, t, ν), (1)

where r ∈ R2, t ∈ [0, T ] and the wave vector k belongs to a unit circle Ω = {k ∈ R2 :

|k| = 1}. The function I(r,k, t, ν) is interpreted as a wave energy flux density at the

point of time t at the point r, propagating in the direction k at the frequency ν at the

speed c. Values µ and σ are the attenuation and scattering coefficients respectively, and

the function J the sources of the sound field.

We add the following initial condition to the equation (1)

I−(r,k, 0, ν) = 0, (r,k) ∈ G× Ω (2)

and assume that the function J describes a point radiation source of unit strength located

at the origin of coordinates and emitting a chirp signal with the duration ∆t in the

frequency range [νmin, νmax]:

J(r,k, t, ν) = δ(r)δ

(
t− t0 − (ν − ν0)

∆t

∆ν

)
, (3)

where ∆ν = νmax− νmin, δ is the Dirac’s delta function, ν0 = (νmin + νmax)/2 the carrier

frequency and I±(r,k, t, ν) = lim
ε→−0

I(r± εk,k, t± ε, ν).

The direct problem of the transfer equation (1) is the problem of determination of

the function I using equation (1) and initial condition (2) with all coefficients given

(c, µ, σ, J). It is assumed that c and µ are scalar values, and σ(r) is a piecewise con-

tinuous function in R2, and σ(r) ≤ µ. Inverse problems for the kinetic equations of the

radiation transfer differ in formulations and research methods [6,8–13]. We study an in-

verse problem that consists of determination of the function σ based on relations (1)–(3)

and an additional condition

1

∆ν

ν0+∆ν/2∫
ν0−∆ν/2

I+

(
0,k, t+ (ν − ν0)

∆t

∆ν
, ν

)
dν = P (k, t). (4)

Values c, µ and function P are assumed to be given. In [1,2] along with the pulse radiation

source an additional condition with the following form was considered

I+ (0,k, t) = P (k, t). (5)

The condition (5) turns into (4) when spectral range width tends to zero.
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2 Neumann series for direct problem solution

The solution to the Cauchy problem (1), (2) can be found in the form of the Neumann

series [1, 2]

I(r,k, t, ν) =

∞∑
n=0

In(r,k, t, ν), (6)

where

In(r,k, t, ν) =

ct∫
0

exp(−µτ)
σ(r− τk)

2π

∫
Ω

In−1

(
r− τk,k′, t− τ

c
, ν
)
dk′dτ, (7)

I0(r,k, t, ν) =

ct∫
0

exp(−µτ)J
(
r− τk,k, t− τ

c
, ν
)
dτ. (8)

Considering the form (3) of the radiation source J , singular term I0 of the Neumann

series (6) contains the product of the delta functions, other terms do not contain delta

functions and thus the sum I1 + I2 + . . . comprises its regular part.

From the relations (7), (8) for the first component of the Neumann series I1 we get

I1(r,k, t, ν) =
1

2π

ct∫
0

exp(−µτ)σ(r− τk)

∫
Ω

ct−τ∫
0

exp(−µτ ′)×

× J
(
r− τk− τ ′k′,k′, t− τ + τ ′

c
, ν

)
dτ ′dk′dτ =

1

2π

ct∫
0

exp(−µτ)σ(r− τk)×

×
∫
Ω

∞∫
0

χct−τ (τ ′) exp(−µτ ′)J
(
r− τk− τ ′k′,k′, t− τ + τ ′

c
, ν

)
dτ ′dk′dτ, (9)

where χct−τ (τ ′) is the characteristic function of the interval [0, ct− τ ].

By performing a variable substitution x = r−τ ′k′ in (9), based on a system of implicit

equations

Fi(x,k
′, t) = xi − ri + τ ′k′i = 0, i = 1, 2, F3(k′) = |k′| − 1 = 0

whith the Jacobian |r− x|, we find

I1(r,k, t, ν) =
1

2π

ct∫
0

exp(−µτ)σ(r− τk)

∫
R2

χct−τ (|r− x|)exp(−µ|r− x|)
|r− x|

×

×δ(x− τk)δ

(
t− t0 −

τ + |r− x|
c

− (ν − ν0)
∆t

∆ν

)
dxdτ =

1

2π

ct∫
0

χct−τ (|r− τk|)×

× exp(−µτ)σ(r− τk)
exp(−µ|r− τk|)
|r− τk|

δ

(
t− t0 −

τ + |r− τk|
c

− (ν − ν0)
∆t

∆ν

)
dτ.
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Therefore,

I1(r,k, t, ν) =
1

2π

∞∫
0

χct(τ)χct−τ (|r− τk|)exp(−µ(τ + |r− τk|))
|r− τk|

σ(r− τk)×

×δ
(
t− t0 −

τ + |r− τk|
c

− (ν − ν0)
∆t

∆ν

)
dτ.

(10)

After variable substitution

s = (τ + |r− τk|)/c = (τ +
√

(r− τk, r− τk))/c = (τ +
√
|r|2 − 2τ(r,k) + τ2)/c,

τ(r,k, s) =
1

2

(cs)2 − |r|2

cs− (r,k)
,

∂τ(r,k, s)

ds
=
c

2

((cs)2 − 2cs(r,k) + |r|2)

(cs− (r,k))2
=
c

2

|r− csk|2

(cs− (r,k))2
,

from (10) we get

I1(r,k, t, ν) =
1

2π

∞∫
0

χct(τ(r,k, s))χct−τ(r,k,s)(cs− τ(r,k, s))σ (r− τ(r,k, s)k)×

× exp(−µcs)
|r− τ(r,k, s)k|

δ

(
t− t0 − s− (ν − ν0)

∆t

∆ν

)
∂τ

ds
ds = χct∗(τ(r,k, t∗))×

× χct∗−τ(r,k,t∗)(ct− τ(r,k, t∗))
exp(−µct∗)

2π(ct∗ − τ(r,k, t∗))

∂τ(r,k, t)

ds
σ(r− τ(r,k, t)k) =

= χct∗(τ(r,k, t∗))
exp(−µct∗)

2π

2(ct∗ − (r,k))

(ct∗)2 − 2ct∗(r,k) + |r|2
c

2

((ct∗)2 − 2ct∗(r,k) + |r|2)

(ct∗ − (r,k))2
×

× σ(r− τ(r,k, t∗)k) = χct∗(τ(r,k, t∗))
c exp(−µct∗)

2π(ct∗ − (r,k))
σ(r− τ(r,k, t∗)k), (11)

where t∗ = t∗(ν, t) = t− t0 − (ν − ν0)
∆t

∆ν
.

Having the analytic form of the function I1, we can find the rest terms In in the same

way. Unfortunately those terms do not have such a simple analytic form as I1. This in

particular is what makes the single scattering approximation compelling.

3 Single scattering approximation solutions of the inverse prob-
lems

In constructive solutions of the tomography problems methods based on single scatter-

ing approximation became widespread. The use of approximation drastically simplifies

studying of inverse problems, often allowing to find an analytic solution [1, 2, 7, 14, 15].

Now we will derive an analytic formula for the scattering coefficient.
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If r = 0, then τ(r,k, t∗) = ct∗/2 = c

(
t− t0 − (ν − ν0)

∆t

∆ν

)
/2, and (11) for single

scattered radiation flux density gets the following form:

I+
1 (0,k, t, ν) =

exp(−µct∗)
2πt∗

σ

(
−ct

∗

2
k

)
=

=

exp

(
−µc

(
t− t0 − (ν − ν0)

∆t

∆ν

))
2π

(
t− t0 − (ν − ν0)

∆t

∆ν

) σ

(
−ck

2

(
t− t0 − (ν − ν0)

∆t

∆ν

))
.

(12)

Taking k = − r

|r|
and t =

2|r|
c

+ t0 + (ν − ν0)
∆t

∆ν
and using (12), we get

I+
1

(
0,− r

|r|
,

2|r|
c

+ t0 + (ν − ν0)
∆t

∆ν
, ν

)
= σ(r)

(
c exp(−2µ|r|)

4π|r|

)
. (13)

By integrating (13) over the interval ν ∈ [ν0−∆/2, ν0 +∆/2] and expressing the function

σ, we obtain

σ(r) =
4π|r| exp(2µ|r|)

∆ν

ν0+∆ν/2∫
ν0−∆ν/2

I+
1

(
0,− r

|r|
,

2|r|
c

+ t0 + (ν − ν0)
∆t

∆ν
, ν

)
dν. (14)

Formula (14) is an explicit solution of the inverse problem in single scattering approxi-

mation. If we replace the function I1 in (14) with a full flux I = I1 + I2 + . . . , then we

get a formula for the scattering coefficient expressed through the function P :

σ(r) = 4π|r| exp(2µ|r|)P
(
− r

|r|
, t0 +

2|r|
c

)
. (15)

From a practical point of view, the relation (15) serves as a basis for a way to process

the data of chirp radiation flux probing of heterogeneous mediums.
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АННОТАЦИЯ

В рамках кинетической модели переноса линейно-частотно-модулирован-
ного излучения в рассеивающей среде сформулирована обратная зада-
ча, заключающаяся в определении объемного коэффициента рассеяния
звука. Дополнительной информацией в задаче является усредненное по
частоте угловое распределение плотности потока излучения в заданной
точке пространства. Получено аналитическое решение обратной задачи
в приближении однократного рассеяния.

Ключевые слова: уравнение переноса излучения, линейно-частотно-мо-
дулированное зондирование, коэффициент рассеяния, обратная задача
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