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Analysis and computer implementation of
the mathematical model of 180" domain
structures formation in ferroelectrics

The study is devoted to the theoretical analysis and numerical implementation
of the 2D mathematical model of 180" ferroelectric domain structures formation
within the framework of the Landau— Ginzburg—Devonshire thermodynamic ap-
proach supplemented by the Landau—Khalatnikov equation to express the polar-
ization dynamics. The mathematical problem statement is formalized as an initial-
boundary value problem for semilinear parabolic partial differential equation. A
finite element implementation of the model is performed with the use of COMSOL
Multiphysics platform. A series of computational experiments were conducted to
visualize various configurations of ferroelectric domain structures.
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Introduction

In general, reaction-diffusion models are applied to explore space-time structures in non-
linear media arising in various subject areas such as ecology, medicine, biology, chemistry,
physics, etc. [1]. The study the patterns formation in living organisms and in non-living
objects is one of the actual problems of mathematical modelling of a wide class of systems.

In physics, the thermodynamic Landau— Ginzburg theory is used to describe a large
class of bifurcations and nonlinear problems in spatially extended systems. The Lan-
dau— Ginzburg approach has been used to analyze the properties of ferroelectrics, model
ferroelectric polarization switching and hysteresis loops (see [2-6] and references therein).

Mathematically, the spatial-temporal distribution of polarization can be described
on the basis of the Landau— Ginsburg — Devonshire — Khalatnikov thermodynamic model
in the formulation of an initial-boundary value problem for a reaction-diffusion partial
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differential equation [5-9]. Visualization of the polarization distribution is attributed to
the imaging domain structures in ferroelectrics or ferroelectric patterns.

In spite of the various number of studies that are devoted to mathematical prob-
lems for the general cubic-quintic time-dependent Ginzburg—Landau equation, theoret-
ical analysis of the Landau—Khalatnikov model awaits further investigations to develop
the mathematical basis for the thermodynamic theory of ferroelectricity. In our previous
study [8], theoretical and numerical analysis of the initial-boundary value problem for the
generalized 1D Landau—Khalatnikov model was performed. The existence and unique-
ness of the solution are proved. The present study is a continuation of that work and
focuses on the model justification as well as modelling the ferroelectric domain patterns
in the framework of the Landau— Ginzburg — Devonshire — Khalatnikov model using tools
of the COMSOL Multiphysics software.

1 Governing equations

By the above, we assume that the mathematical model of ferroelectric domain pattern
formation can be formalized with the use of the thermodynamic Landau—Ginzburg—
Devonshire theory. In addition, we will take into account the Landau— Khalatnikov
approach to theoretically describe nonstationary polarization changes. By classification,
this model can be referred to as deterministic and expressed using differential equations.
For ferroelectrics with 180" domain structures, polarization reorientation is realized along
one of its components. Hence, the mathematical model is governed by the initial-boundary
value problem for a time-dependent cubic-quintic Landau—Khalatnikov equation:

oP
E:DAP+aP+bP3—cP5+E, O<ax<L, 0<y<L, 0<t<ty, (1)
Pli—o = Po(z,y), 0<a<L, 0<y<lL, (2)
oP
— Plr = 0<t<t 3
q6n|F+w r=g9, 0<t<ty, (3)

where P(z,y,t) is the space-time distribution of the polarization; I" is the boundary of the
solution domain that is a square with a linear size of L; D is the positive thermodynamic
parameter; E is the applied field; a,b,c, ¢, w, g are the thermodynamic constants; ¢ is
the observation time.

The thermodynamic constant a is positive for all known ferroelectrics [3]; ¢ > 0; 6 > 0
for ferroelectrics with the first order phase transition and b < 0 for ferroelectrics with the
second order phase transition (in this case the model equation can be reduced to cubic
partial differential equation). Generally, the applied field E is defined as a temporal
periodical function in modelling of induced polarization switching and set to be zero
in modelling of initial ferroelectric domain state. Notably, to perform simulations, the
particular expressions of boundary conditions are determined due to specific electrical
conditions of physical experiments.
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2 The brief theoretical foundations for the analysis of the model

Following [8], where a similar one-dimensional model is considered, we reduce the problem
(1)—(3) to the Cauchy problem for an equation with an operator coefficient.

Let Q= (0,L) x (0,L), @ =Q x (0,T). By LP, 1 < p < 00, we denote the Lebesgue
space, and by H?® the Sobolev space W5.

The space L*(0,T; X) (respectively C([0,T]; X)) consists of class functions L®, s > 1,
defined on (0,7") (respectively continuous on [0,7]) with values in a Banach space X.
Let H = L?(Q), V = H'(Q). By V' we denote the dual space of V, V C H=H' C V',

We define the operator A: V' — V’/ and the functional g, € V' so that

D D
(AP,U):D/VPVUda:dy—FTw/PvdF, (gb,U)ZE/gvdF VP,veV.
Q r

The initial-boundary value problem (1)—(3) is written in the standard way in the
following form. Find P € L?(0,T;V),

P'+ AP =aP +bP? — cP’ ae. on (0,T), Pli=o = Pp. (4)

The following result is valid, which is proved similarly to the case of an initial-
boundary value problem with homogeneous Dirichlet conditions [10, Th. 1.1].

Theorem 1. For Py € H, there exists a unique solution P of (4) which satisfies the
following conditions: P € C([0,T); H) N L(Q), P’ € L*(0,T; V') + L/5(Q).

3 Computational experiments and discussion

In order to perform computer modelling, we apply the COMSOL Multiphysics software
(license agreement No 20/15/230). First, we demonstrate the dynamics of formation
of a 180" natural domain structure from zero polar orientation at the start moment. To
conduct simulations, we initialize a set of model parameters using arbitrary units: L = 40,
D =1, Py = 0, the thermodynamic constants a, b, ¢ are set equal to unity. Here we define
zero flux of polarization at y =0, y = L for 0 < 2 < L and P|,—g = —Ps, Pls—1 = P,
for 0 < y < L, where P; = 1 is the spontaneous polarization. By model construction, the
positive value of polarization corresponds to the “head up” direction 1 P, whereas the
negative value means “head down” direction of polarization | P.

Figure 1 shows two frames of a 180° two-domain structure formation. One of the key
questions in mathematical modelling of ferroelectric domain patterns is the setting of ini-
tial and boundary conditions due to their influence on the simulation results, especially in
change-of-gradient region. To be precise, we have a quasi 2D model with the polarization
changes only along the coordinate  due to the Dirichlet conditions at the boundaries
of the sample x = 0, x = L as defined above. For y = 0 and y = L at 0 < = < L, the
application of the zero-flux boundary conditions as well as Robin boundary conditions
OP/On = —P/X , where A = 1, leads to the similar results. The simulated space-time
distribution of polarization is presented in Figure 2. This observation suggests that the
physical system comes to the equilibrium state very quickly compared to the Fourier time
tr, ~ 102 for the given experimental conditions. This time is estimated to be t ~ 20.
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Fig. 1: The successive stages of 180" two-domain pattern formation at moments t =7 — a
and t =20 — b.
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Fig. 2: The space-time distribution of polarization at y = L/2.

Further computations illustrate the main peculiarities of 180° multi-domain pattern
formation. Zero value of initial polarization can be associated with the artificial creation
of a non-polarized state of ferroelectric stimulated by an applied external field. This
implies that it would be more appropriate for a natural state of domain structures to
specify the initial condition with a random distribution of polarization. We initialize
Py(z,y) as the uniform random distribution ranging from 0 to 1 with a zero mean. Here
we set zero-flux boundary conditions for all boundaries of the solution domain.

In Figure 3 we visualize the sequential stages of 180" domain pattern dynamics for
fixed times. Figure 3 d corresponds to the image of domain boundaries due to calculation
of the the absolute value of polarization (the similar way is usually used in scanning elec-
tron microscopy and atomic force microscopy). We can observe unstable multi-domain
pattern of ferroelectric sample. The system relaxes after a time ¢ ~ 200 to a single-
domain state. The application of the Robin boundary conditions or zero-flux boundary
conditions leads to similar results. Note also that obtained simulation data refer to uniax-
ial ferroelectric crystals with first-order phase transitions (e.g., lithium niobate, lithium
tantalate) [11]. The similar types of 180" ferroelectric domain patterns can be simulated
for ferroelectrics with the second-order of phase transitions.
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Fig. 3: The sequential stages of 180" multi-domain pattern formation at moments t= 0 —
a,t =3 — b, t =20 — ¢ and visualization of domain boundaries ¢t = 20 — d.

Conclusion

Thus, the study has contributed to the development of mathematical basis for 2D ther-
modynamics model of 180° domain pattern formation in ferroelectrics. The model for-
malized as an initial-boundary value problem for time-dependent cubic-quintic Landau—
Khalatnikov equation is examined from the theoretical and the numerical points of view.
The existence and uniqueness of a weak solution are discussed. Finite element imple-
mentation of the model with COMSOL Multiphysics software allowed us to establish
the features of the development of various domain patterns depending on the setting of
boundary and initial conditions.
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Beceaosa E. M. Ananus u KoMIbIOTEpHAST PEATU3AI MATEMATHIECKONR MO-
Jieru popmupoBanus 180° IOMEHHBIX CTPYKTYP B CErHETOdIEKTPpUKax. Jlajib-
HeBOCTOUHBIH Maremaruieckuii >xypras. 2022. T. 22. Ne 2. C. 257-262.

AHHOTAIINS

Pabora mocssiiiieHa TeopeTHUECKOMY aHAJU3Y U YMCJIEHHON peasim3amnuu 2D
Moyt POPMUPOBAHUS 180° CETrHETO3JIEKTPUYECKHUX JJOMEHHBIX CTPYKTYD B
paMKax TePMOJAMHAMUYIECKOro moaxoaa Jlammay — 'mazdypra— leBonmmupa,
JIONIOJTHEHHOTO ypaBHeHueM Jlanmay — XaaaTHUKOBA JJIsi BHIDAXKEHUs] JTMHA~
MUKH Tosispusaruu. Mosesib (popMan3oBaHa B BHjie HAUAIbHO-KPAEBOIl 3a-
Jla9y JJIs TIOJIYJINHEITHOrO 1apaboInyecKoro ypaBHEHUS B YaCTHBIX IIPOU3-
BosiHBIX. OBCYXKIAETCsST BOIPOC CYIECTBOBAHNS U €JIMHCTBEHHOCTH CJIADOrO
perernsi. KoHeuHo-3/1eMEHTHAST pEATHM3AINS MOJIE/N BBIIOJHEHA C UCIIO/Ihb-
zoBanneM 1miaTrgopmbl COMSOL Multiphysics. Ilposenena cepusi Beraumc-
JINTEJIbHBIX SKCIIEPUMEHTOB JIJIsI BU3Ya U3aIlUU PA3JIUIHBIX KOH(MUTYPAITHi
CErHETOIEKTPUIECKUX JIOMEHHBIX CTPYKTYP.

Kirouessie ciioBa: peakuyuorHo-0uddysuonnas cucmema, modeav Jlanday —
Tunsbypea — lesonuwupa — Xaramuurkosa, memod KOHEUHbLT SAEMEHMOS, Ce-
2HEMOINEKMPUECKAA QOMEHHAA CINPYKMYPQ.
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