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Analysis and computer implementation of

the mathematical model of 180
◦
domain

structures formation in ferroelectrics

The study is devoted to the theoretical analysis and numerical implementation
of the 2D mathematical model of 180

◦
ferroelectric domain structures formation

within the framework of the Landau – Ginzburg – Devonshire thermodynamic ap-
proach supplemented by the Landau – Khalatnikov equation to express the polar-
ization dynamics. The mathematical problem statement is formalized as an initial-
boundary value problem for semilinear parabolic partial differential equation. A
finite element implementation of the model is performed with the use of COMSOL
Multiphysics platform. A series of computational experiments were conducted to
visualize various configurations of ferroelectric domain structures.
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Introduction

In general, reaction-diffusion models are applied to explore space-time structures in non-

linear media arising in various subject areas such as ecology, medicine, biology, chemistry,

physics, etc. [1]. The study the patterns formation in living organisms and in non-living

objects is one of the actual problems of mathematical modelling of a wide class of systems.

In physics, the thermodynamic Landau – Ginzburg theory is used to describe a large

class of bifurcations and nonlinear problems in spatially extended systems. The Lan-

dau – Ginzburg approach has been used to analyze the properties of ferroelectrics, model

ferroelectric polarization switching and hysteresis loops (see [2–6] and references therein).

Mathematically, the spatial-temporal distribution of polarization can be described

on the basis of the Landau – Ginsburg – Devonshire – Khalatnikov thermodynamic model

in the formulation of an initial-boundary value problem for a reaction-diffusion partial
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differential equation [5–9]. Visualization of the polarization distribution is attributed to

the imaging domain structures in ferroelectrics or ferroelectric patterns.

In spite of the various number of studies that are devoted to mathematical prob-

lems for the general cubic-quintic time-dependent Ginzburg – Landau equation, theoret-

ical analysis of the Landau – Khalatnikov model awaits further investigations to develop

the mathematical basis for the thermodynamic theory of ferroelectricity. In our previous

study [8], theoretical and numerical analysis of the initial-boundary value problem for the

generalized 1D Landau – Khalatnikov model was performed. The existence and unique-

ness of the solution are proved. The present study is a continuation of that work and

focuses on the model justification as well as modelling the ferroelectric domain patterns

in the framework of the Landau – Ginzburg – Devonshire – Khalatnikov model using tools

of the COMSOL Multiphysics software.

1 Governing equations

By the above, we assume that the mathematical model of ferroelectric domain pattern

formation can be formalized with the use of the thermodynamic Landau – Ginzburg –

Devonshire theory. In addition, we will take into account the Landau – Khalatnikov

approach to theoretically describe nonstationary polarization changes. By classification,

this model can be referred to as deterministic and expressed using differential equations.

For ferroelectrics with 180
◦

domain structures, polarization reorientation is realized along

one of its components. Hence, the mathematical model is governed by the initial-boundary

value problem for a time-dependent cubic-quintic Landau – Khalatnikov equation:

∂P

∂t
= D∆P + aP + bP 3 − cP 5 + E, 0 < x < L, 0 < y < L, 0 < t ≤ tb, (1)

P |t=0 = P0(x, y), 0 < x < L, 0 < y < L, (2)

q
∂P

∂n
|Γ + wP |Γ = g, 0 < t ≤ tb, (3)

where P (x, y, t) is the space-time distribution of the polarization; Γ is the boundary of the

solution domain that is a square with a linear size of L; D is the positive thermodynamic

parameter; E is the applied field; a, b, c, q, w, g are the thermodynamic constants; tb is

the observation time.

The thermodynamic constant a is positive for all known ferroelectrics [3]; c > 0; b > 0

for ferroelectrics with the first order phase transition and b < 0 for ferroelectrics with the

second order phase transition (in this case the model equation can be reduced to cubic

partial differential equation). Generally, the applied field E is defined as a temporal

periodical function in modelling of induced polarization switching and set to be zero

in modelling of initial ferroelectric domain state. Notably, to perform simulations, the

particular expressions of boundary conditions are determined due to specific electrical

conditions of physical experiments.
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2 The brief theoretical foundations for the analysis of the model

Following [8], where a similar one-dimensional model is considered, we reduce the problem

(1)–(3) to the Cauchy problem for an equation with an operator coefficient.

Let Ω = (0, L)× (0, L), Q = Ω× (0, T ). By Lp, 1 ≤ p ≤ ∞, we denote the Lebesgue

space, and by Hs the Sobolev space W s
2 .

The space Ls(0, T ;X) (respectively C([0, T ];X)) consists of class functions Ls, s ≥ 1,

defined on (0, T ) (respectively continuous on [0, T ]) with values in a Banach space X.

Let H = L2(Ω), V = H1(Ω). By V ′ we denote the dual space of V , V ⊂ H = H ′ ⊂ V ′.
We define the operator A : V → V ′ and the functional gb ∈ V ′ so that

(AP, v) = D

∫
Ω

∇P∇v dxdy +
Dw

q

∫
Γ

Pv dΓ, (gb, v) =
D

q

∫
Γ

gv dΓ ∀P, v ∈ V.

The initial-boundary value problem (1)–(3) is written in the standard way in the

following form. Find P ∈ L2(0, T ;V ),

P ′ +AP = aP + bP 3 − cP 5 a.e. on (0, T ), P |t=0 = P0. (4)

The following result is valid, which is proved similarly to the case of an initial-

boundary value problem with homogeneous Dirichlet conditions [10, Th. 1.1].

Theorem 1. For P0 ∈ H, there exists a unique solution P of (4) which satisfies the

following conditions: P ∈ C([0, T ];H) ∩ L6(Q), P ′ ∈ L2(0, T ;V ′) + L6/5(Q).

3 Computational experiments and discussion

In order to perform computer modelling, we apply the COMSOL Multiphysics software

(license agreement No 20/15/230). First, we demonstrate the dynamics of formation

of a 180
◦

natural domain structure from zero polar orientation at the start moment. To

conduct simulations, we initialize a set of model parameters using arbitrary units: L = 40,

D = 1, P0 = 0, the thermodynamic constants a, b, c are set equal to unity. Here we define

zero flux of polarization at y = 0, y = L for 0 < x < L and P |x=0 = −Ps, P |x=L = Ps,

for 0 < y < L, where Ps = 1 is the spontaneous polarization. By model construction, the

positive value of polarization corresponds to the “head up” direction ↑ P, whereas the

negative value means “head down” direction of polarization ↓ P.

Figure 1 shows two frames of a 180
◦

two-domain structure formation. One of the key

questions in mathematical modelling of ferroelectric domain patterns is the setting of ini-

tial and boundary conditions due to their influence on the simulation results, especially in

change-of-gradient region. To be precise, we have a quasi 2D model with the polarization

changes only along the coordinate x due to the Dirichlet conditions at the boundaries

of the sample x = 0, x = L as defined above. For y = 0 and y = L at 0 < x < L, the

application of the zero-flux boundary conditions as well as Robin boundary conditions

∂P/∂n = −P/λ , where λ = 1, leads to the similar results. The simulated space-time

distribution of polarization is presented in Figure 2. This observation suggests that the

physical system comes to the equilibrium state very quickly compared to the Fourier time

tFo
≈ 103 for the given experimental conditions. This time is estimated to be t ≈ 20.
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a b

Fig. 1: The successive stages of 180
◦

two-domain pattern formation at moments t = 7 — a

and t = 20 — b.

Fig. 2: The space-time distribution of polarization at y = L/2.

Further computations illustrate the main peculiarities of 180
◦

multi-domain pattern

formation. Zero value of initial polarization can be associated with the artificial creation

of a non-polarized state of ferroelectric stimulated by an applied external field. This

implies that it would be more appropriate for a natural state of domain structures to

specify the initial condition with a random distribution of polarization. We initialize

P0(x, y) as the uniform random distribution ranging from 0 to 1 with a zero mean. Here

we set zero-flux boundary conditions for all boundaries of the solution domain.

In Figure 3 we visualize the sequential stages of 180
◦

domain pattern dynamics for

fixed times. Figure 3 d corresponds to the image of domain boundaries due to calculation

of the the absolute value of polarization (the similar way is usually used in scanning elec-

tron microscopy and atomic force microscopy). We can observe unstable multi-domain

pattern of ferroelectric sample. The system relaxes after a time t ≈ 200 to a single-

domain state. The application of the Robin boundary conditions or zero-flux boundary

conditions leads to similar results. Note also that obtained simulation data refer to uniax-

ial ferroelectric crystals with first-order phase transitions (e.g., lithium niobate, lithium

tantalate) [11]. The similar types of 180
◦

ferroelectric domain patterns can be simulated

for ferroelectrics with the second-order of phase transitions.



Analysis and computer implementation of the mathematical model . . . 261

a b

c d

Fig. 3: The sequential stages of 180
◦
multi-domain pattern formation at moments t= 0 —

a, t = 3 — b, t = 20 — c and visualization of domain boundaries t = 20 — d.

Conclusion

Thus, the study has contributed to the development of mathematical basis for 2D ther-

modynamics model of 180
◦

domain pattern formation in ferroelectrics. The model for-

malized as an initial-boundary value problem for time-dependent cubic-quintic Landau –

Khalatnikov equation is examined from the theoretical and the numerical points of view.

The existence and uniqueness of a weak solution are discussed. Finite element imple-

mentation of the model with COMSOL Multiphysics software allowed us to establish

the features of the development of various domain patterns depending on the setting of

boundary and initial conditions.
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АННОТАЦИЯ

Работа посвящена теоретическому анализу и численной реализации 2D
модели формирования 180

◦
сегнетоэлектрических доменных структур в

рамках термодинамического подхода Ландау –Гинзбурга –Девоншира,
дополненного уравнением Ландау –Халатникова для выражения дина-
мики поляризации. Модель формализована в виде начально-краевой за-
дачи для полулинейного параболического уравнения в частных произ-
водных. Обсуждается вопрос существования и единственности слабого
решения. Конечно-элементная реализация модели выполнена с исполь-
зованием платформы COMSOL Multiphysics. Проведена серия вычис-
лительных экспериментов для визуализации различных конфигураций
сегнетоэлектрических доменных структур.

Ключевые слова: реакционно-диффузионная система, модель Ландау –
Гинзбурга –Девоншира –Халатникова, метод конечных элементов, се-
гнетоэлектрическая доменная структура.


	Governing equations
	The brief theoretical foundations for the analysis of the model
	Computational experiments and discussion
	References

