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Efficient Parareal algorithm for solving

time-fractional diffusion equation

The work is devoted to developing efficient parallel algorithms for solving the ini-
tial boundary problem for the time-fractional diffusion equation. Traditional ap-
proaches to parallelization are based on the space domain decomposition. In con-
trast, the parareal method is based on the time domain decomposition and an
iterative predictor-corrector procedure. The fast solver on a coarse grid is used
to construct the initial approximations for subtasks (solved by accurate solvers
on finer grids) and for correcting the solutions of subtasks. The subtasks may be
solved independently for each subinterval of time. This allows one to implement the
efficient parallel algorithms for various high-performance architectures. Currently,
this method is widely used for problems for classical differential equations with in-
teger orders. But it is much less commonly used for the fractional equations. In
this work, the parareal algorithm for solving the initial boundary problem for the
time-fractional diffusion equation is implemented using the OpenMP technology
for multicore processors. The numerical experiments are performed to estimate the
efficiency of parallel implementation and compare the parareal algorithm with the
traditional space domain decomposition.
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Introduction

Fractional calculus gained large interest recently [1,2], as it allows one to develop mathe-

matical models for various physical processes with memory and nonlocality effects, such

as anomalous diffusion [3].
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The numerical methods for solving the direct and inverse problems for fractional

differential equations are usually more computationally expensive than for classical dif-

ferential equation, as they require storing and utilizing the entire history of the process.

This makes importance of the parallel computing in implementing the numerical algo-

rithms for such problems.

One of the common problems in this field is the initial-boundary problem for the time-

fractional diffusion equation. Several parallel algorithms are designed specifically for this

problem [4–6]. Usually, these algorithms are based on space domain decomposition or

using parallel algorithms for auxilliary problems, such as solving SLAEs.

In this paper, we implement the parallel algorithm for solving the time-fractional

diffusion equation on the base of the parareal method [7,8]. It is based on the predictor-

corrector procedure and utilization of two solvers. The former is a fast solver on a coarse

grid, and the latter is a precise solver on a fine grids. The precise solver is split into sub-

tasks that can be executed in parallel. Under suitable condition, the correction iteration

will converge to a serial solution after a couple of iterations.

The paper is organized as follows. In Section 1, we present the statement of the

problem. In Section 2, we describe the papareal method for a time-fractional diffusion

equation. The results of numerical experiments are presented in Section 3. Section 4

concludes the paper.

1 Statement of the Problem

Consider the basis time-fractional parabolic partial differential equation in the following

form:
∂αU(x, t)

∂tα
= a(x)

∂2U(x, t)

∂x2
+ b(x)

∂U(x, t)

∂x
+ c(x)U(x, t) + d(x, t), (1)

where U(x, t) is the sought function, a(x), b(x), c(x), d(x, t) are the known functions or

constants, 0 < α < 1 is the parameter defining the fractional order of the time derivative.

The problem is on the space interval 0 ≤ x ≤ ` and time interval 0 ≤ t ≤ T . The

boundary and initial conditions are

U(0, t) = g1(t), U(`, t) = g2(t), 0 ≤ t ≤ T.
U(x, 0) = g0(x), 0 ≤ x ≤ `

where g0(x), g1(t), g2(t) are the given functions.

We consider the following definition of the Caputo fractional partial derivative [9]:

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∞∫
0

∂u(x− s)
∂t

(t− s)−αds. (2)

Discretization of Equation (1) is performed by splitting the space interval [0, `] into

a grid of m points with step h = ∆x = `/m. The time interval [0, T ] is split into the

fine grid of N points with step δt = T/N and a coarse grid of L points (such as N is

a multiple of L) with step ∆T = T/L. Then, we can denote the grid points for space
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as xi = ih, i ∈ {0, 1, ...,m}. The grid points for time are denoted as tj = jδt, j ∈
{0, 1, ..., N} and Tl = l∆T, l ∈ {0, 1, ..., L}. Now, we can denote the values of the sought

function U(x, t) at the fine grid points as U i,j = U(xi, tj), and at the coarse grid points

as Ũi,l = U(xi, Tl).

For approximating the Caputo fractional partial derivative in the left-hand part of

Equation (1) with time step τ , we use the first-order approximation formula

Dα
t U i,n

∼= σ(α, τ)

n∑
j=1

w
(α)
j (U i,n−j+1 − U i,n−j),

σ(α, τ) =
1

Γ(1− α)(1− α)τα
, w

(α)
j = j1−α − (j − 1)1−α.

(3)

After applying the implicit finite difference scheme of the second order at the grid

point (xi, tn) (for either the fine grid or coarse grid), we obtain the difference equation

σα,τ

n∑
j=1

w
(α)
j (Ui,n−j+1 − Ui,n−j) =

= ai
Ui−1,n − 2Ui,n + Ui+1,n

h2
+ bi

Ui+1,n − Ui−1,n
2h

+ ciUi,n + di,n .

(4)

Then, after transforming the equation and denoting

pi =
ai
h2
− bi

2h
, qi = σα,τ − ci +

2ai
h2

, ri =
ai
h2

+
bi
2h

fi,n = σα,τ

Ui,n−1 − n∑
j=2

w
(α)
j (Ui,n−j+1 − Ui,n−j)

+ di,n, n > 1,

fi,1 = σα,τUi,0 + di,0,

we can combine equations for all spatial points into a system of linear algebraic equations

AUn = fn, (5)

where

Un = [U1,n, U2,n, ..., Um−1,n],

fn = [f1,n + p1U0,n, f2,n, ..., fm−2,n, ..., fm−1,n + rm−1Um,n].

Matrix A is a square tridiagonal matrix of (m − 1) × (m − 1) dimension. To solve

system (5), we use the sweep method [10]. Thus, solving the initial-boundary problem

for time interval {Tstart;Tend} on either fine or coarse grid is reduced to solving the

systems (5) sequentially at each time level with correspondent time step τ = δt or ∆T .

2 Parareal method for fractional differential equations

Let us denote F(Uend;Tstart;Tend) as the numerical solution obtained on the fine grid,

and G(Uend;Tstart;Tend) as the solution obtained on the coarse grid.
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The parareal method for the time-fractional diffusion equation is an iterative method

given as [8]

Uk+1
n = G

(
Uk+1
n ;T0;Tn

)
+ F

(
Ukn ;T0;Tn

)
− G

(
Ukn ;T0;Tn

)
,

n ∈ {1, 2, . . . , N} , k ∈ {0, 1, . . . , } .

Apparently, if lim
k→∞

Uk+1
n exists, than Uk+1

n → F(Un;T0;Tn), i.e., the parareal solu-

tion converges to the serial solution on the fine grid.

In contrast with the parareal method for classical differential equations where the fine

grid propagators integrate only over the interval {Tn−1, Tn}, the fractional derivatives

require the entire history part of the solution. That means that integrating on the fine

grid {T0, Tn} with step δt to obtain the F(Ukn ;T0;Tn) is equivalent to the serial algorithm.

Thus, the parareal method will not give us any performance advantages.

To alleviate this problem, we use the idea described in [11]. It consists in using the

composite fine grid solution operators F̃(Ukn ;T0;Tn), where the latest interval {Tn−1, Tn}
uses the fine grid with the time step δt and the history part {T0, Tn−1} is integrated on

the coarse grid with the time step ∆T .

The fine grid solutions F̃(Ukn ;T0;Tn) can be computed independently for points Tn,

allowing the parallelization. In our implementation, this work is distributed between the

OpenMP threads, while the coarse grid corrections G are performed in serial mode using

‘#pragma omp master‘ directive.

3 Numerical experiments

In this section, we apply our parallel implementations of the parareal algorithm to numer-

ical solution of the time-fractional diffusion equation. The experiments were performed

on 16-core Intel i7-12900k CPU. This section presents the results of the experiments.

The test problem uses the equation [6]

∂αU(x, t)

∂tα
=
∂2U(x, t)

∂x2
+

Γ(4 + α)

6
x2(2− x)t3 − 4x2(6− 5x)t3+α,

0 < α < 1, 0 ≤ x ≤ 2, 0 ≤ t ≤ 1,

with the boundary and initial conditions

U(0, t) = 0, U(2, t) = 0, 0 ≤ t ≤ T,
U(x, 0) = 0, 0 ≤ x ≤ `.

The exact solution of this problem is

U(x, t) = x4(2− x)t3+α.

The numerical experiments were performed for the order α = 0.5 with the grid sizes

m = 4096, N = 4096.

Table 1 presents the results of numerical experiments for the test problem using the se-

rial implementation, the parareal algorithm, and the parallel sweep method implemented
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Table 1: Results of experiments for the test problem with grid m = 4096, N = 4096.

Method T1 [sec] T16 [sec] K δ

Serial 6.6 3 · 10−7

Parallel sweep 6.6 6.6 3 · 10−7

Parareal 6.6 0.5 4 3.8 · 10−7

previously in work [6]. It contains the execution times T1 for serial programs (which is

equivalent to the parallel program with a single thread), as well as the times T16 for par-

allel programs run on 16 OpenMP threads. The last column presents the relative error

δ =
∥∥∥(U − U)/U

∥∥∥
∞

of the solution obtained by a given method.

These results show that the parareal method is a very promising approach. The

parallel sweep method is based on the spatial decomposition, and shows good performance

only for a large spatial grids. m = 4096 is too small, resulting in overhead preventing any

speedup of parallel algorithm. In contrast, while the parareal method required 4 iteration

to converge, the total speedup is significant, over 13 times using 16 threads.

4 Conclusions

In this work, the parallel algorithm for solving the initial boundary problem for the

time-fractional diffusion equation is implemented on the base of the parareal method.

The algorithm is based on the finite-difference scheme for approximating the differential

equation and the sweep method for solving the systems of linear algebraic equations.

The parallel implementation is based on the time domain decomposition and parareal

method. The algorithm is implemented for the multicore processors using the OpenMP

technology. The numerical experiments were performed to investigate the efficiency of

the developed parallel algorithm. The parallel algorithm reduces the computing time up

to 13 times using the 16-core processor.
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АННОТАЦИЯ

Статья посвящена разработке эффективных параллельных алгоритмов
решения начально-краевой задачи для уравнения диффузии с дробной
производной по времени. Традиционные подходы к распараллеливанию
основаны на декомпозиции пространственной области. Метод Parareal,
напротив, основан на декомпозиции временной области и итеративной
процедуре “предиктор-корректор”. Быстрый решатель на грубой сет-
ке используется для построения начальных приближений для подзадач
(решаемых точными решателями на более мелких сетках) и для коррек-
тировки решений подзадач. Подзадачи могут решаться независимо для
каждого подынтервала времени. Это позволяет реализовать эффектив-
ные параллельные алгоритмы для различных высокопроизводительных
архитектур. В настоящее время данный метод широко используется в
задачах для классических дифференциальных уравнений с целыми по-
рядками производных, гораздо реже используется для дробных уравне-
ний. В данной работе алгоритм Parareal для решения начально-краевой
задачи для уравнения диффузии с дробной производной по времени
реализован для многоядерных процессоров с использованием техноло-
гии OpenMP. Проведены численные эксперименты для оценки эффек-
тивности параллельной реализации и сравнения алгоритма Parareal с
традиционной декомпозицией в пространственной области.

Ключевые слова: дробная производная Капуто, уравнение диффузии
с дробной производной по времени, параллельные вычисления, метод
Parareal.
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