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Efficient Parareal algorithm for solving
time-fractional diffusion equation

The work is devoted to developing efficient parallel algorithms for solving the ini-
tial boundary problem for the time-fractional diffusion equation. Traditional ap-
proaches to parallelization are based on the space domain decomposition. In con-
trast, the parareal method is based on the time domain decomposition and an
iterative predictor-corrector procedure. The fast solver on a coarse grid is used
to construct the initial approximations for subtasks (solved by accurate solvers
on finer grids) and for correcting the solutions of subtasks. The subtasks may be
solved independently for each subinterval of time. This allows one to implement the
efficient parallel algorithms for various high-performance architectures. Currently,
this method is widely used for problems for classical differential equations with in-
teger orders. But it is much less commonly used for the fractional equations. In
this work, the parareal algorithm for solving the initial boundary problem for the
time-fractional diffusion equation is implemented using the OpenMP technology
for multicore processors. The numerical experiments are performed to estimate the
efficiency of parallel implementation and compare the parareal algorithm with the
traditional space domain decomposition.

Key words: Caputo fractional derivative, time-fractional diffusion equation, par-
allel computing, parareal method.

DOI:  https://doi.org/10.47910/FEMJ202233

Introduction

Fractional calculus gained large interest recently [1,2], as it allows one to develop mathe-
matical models for various physical processes with memory and nonlocality effects, such
as anomalous diffusion [3].
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The numerical methods for solving the direct and inverse problems for fractional
differential equations are usually more computationally expensive than for classical dif-
ferential equation, as they require storing and utilizing the entire history of the process.
This makes importance of the parallel computing in implementing the numerical algo-
rithms for such problems.

One of the common problems in this field is the initial-boundary problem for the time-
fractional diffusion equation. Several parallel algorithms are designed specifically for this
problem [4-6]. Usually, these algorithms are based on space domain decomposition or
using parallel algorithms for auxilliary problems, such as solving SLAEs.

In this paper, we implement the parallel algorithm for solving the time-fractional
diffusion equation on the base of the parareal method [7,8]. It is based on the predictor-
corrector procedure and utilization of two solvers. The former is a fast solver on a coarse
grid, and the latter is a precise solver on a fine grids. The precise solver is split into sub-
tasks that can be executed in parallel. Under suitable condition, the correction iteration
will converge to a serial solution after a couple of iterations.

The paper is organized as follows. In Section 1, we present the statement of the
problem. In Section 2, we describe the papareal method for a time-fractional diffusion
equation. The results of numerical experiments are presented in Section 3. Section 4
concludes the paper.

1 Statement of the Problem

Consider the basis time-fractional parabolic partial differential equation in the following

form: o (1 207 (x T
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where U(z,t) is the sought function, a(z),b(x),c(x),d(x,t) are the known functions or
constants, 0 < a < 1 is the parameter defining the fractional order of the time derivative.

The problem is on the space interval 0 < z < ¢ and time interval 0 < ¢t < T. The
boundary and initial conditions are

U(Oat) = gl(t)v U(ga t) = gZ(t)v 0<t<T.

where go(x),g1(t), g2(t) are the given functions.
We consider the following definition of the Caputo fractional partial derivative [9]:
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Discretization of Equation (1) is performed by splitting the space interval [0, £] into
a grid of m points with step h = Az = ¢/m. The time interval [0, 7] is split into the
fine grid of N points with step 6t = T//N and a coarse grid of L points (such as N is
a multiple of L) with step AT = T'/L. Then, we can denote the grid points for space
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as x; = th, 1 € {0,1,...,m}. The grid points for time are denoted as t; = jét, j €
{0,1,..., N} and T; = IAT, 1€{0,1,...,L}. Now, we can denote the values of the sought
function U(x,t) at the fine grid points as U; ; = U(z,t;), and at the coarse grid points
as Uhl =U(z;, T)).

For approximating the Caputo fractional partial derivative in the left-hand part of
Equation (1) with time step 7, we use the first-order approximation formula
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After applying the implicit finite difference scheme of the second order at the grid
point (x;,t,) (for either the fine grid or coarse grid), we obtain the difference equation

Oa,1 E w 1,71 j+1 — Ui,n—j):
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Then, after transforming the equation and denoting
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we can combine equations for all spatial points into a system of linear algebraic equations
AU, = fn, (5)
where

Un = [Ul,’ru U27n7 cey Um—l,n]a
fn= [fl,n +p1UO,n, f2,na ceey fm—2,n7 ceey fm—l,n + 7nm—ll']m,ny
Matrix A is a square tridiagonal matrix of (m — 1) x (m — 1) dimension. To solve
system (5), we use the sweep method [10]. Thus, solving the initial-boundary problem

for time interval {Titart; Tona} on either fine or coarse grid is reduced to solving the
systems (5) sequentially at each time level with correspondent time step 7 = ot or AT.

2 Parareal method for fractional differential equations

Let us denote F(Uend; Tstart; Tend) as the numerical solution obtained on the fine grid,
and G(Uend; Tstart; Tend) as the solution obtained on the coarse grid.
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The parareal method for the time-fractional diffusion equation is an iterative method
given as [8]

UMY = G (UMY Ty, T,) + F (U To; T) — 6 (UF Tos T
ne{l,2,....,N}, ke{0,1,...,}.

Apparently, if len;C Ukt exists, than U — F(U,;Ty; T},), i-e., the parareal solu-
tion converges to the serial solution on the fine grid.

In contrast with the parareal method for classical differential equations where the fine
grid propagators integrate only over the interval {T,,_1,T,}, the fractional derivatives
require the entire history part of the solution. That means that integrating on the fine
grid {Tp, T,,} with step 6t to obtain the F(UEK; Ty; T;,) is equivalent to the serial algorithm.
Thus, the parareal method will not give us any performance advantages.

To alleviate this problem, we use the idea described in [11]. It consists in using the
composite fine grid solution operators F (UF; Ty; T;,), where the latest interval {T},_1, T}, }
uses the fine grid with the time step §t and the history part {7y, T,—1} is integrated on
the coarse grid with the time step AT.

The fine grid solutions F (UF; Ty; Ty,) can be computed independently for points T},,
allowing the parallelization. In our implementation, this work is distributed between the
OpenMP threads, while the coarse grid corrections G are performed in serial mode using
‘#pragma omp master‘ directive.

3 Numerical experiments

In this section, we apply our parallel implementations of the parareal algorithm to numer-

ical solution of the time-fractional diffusion equation. The experiments were performed

on 16-core Intel i17-12900k CPU. This section presents the results of the experiments.
The test problem uses the equation [6]

0°U(x,t)  0°U(x,t) N I'4+ )
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with the boundary and initial conditions
U@,t)=0, U2,t)=0, 0<t<T,
U(z,00=0, 0<z<U{.
The exact solution of this problem is
Uz, t) = 242 — z)t3+,

The numerical experiments were performed for the order a = 0.5 with the grid sizes
m = 4096, N = 4096.

Table 1 presents the results of numerical experiments for the test problem using the se-
rial implementation, the parareal algorithm, and the parallel sweep method implemented
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Table 1: Results of experiments for the test problem with grid m = 4096, N = 4096.

Method T, [sec] | Ty [sec] | K 4]
Serial 6.6 3-1077
Parallel sweep 6.6 6.6 3-1077
Parareal 6.6 0.5 4 1381077

previously in work [6]. It contains the execution times 77 for serial programs (which is
equivalent to the parallel program with a single thread), as well as the times T3¢ for par-
allel programs run on 16 OpenMP threads. The last column presents the relative error
J= H(U - U)/UH of the solution obtained by a given method.

o0

These results show that the parareal method is a very promising approach. The
parallel sweep method is based on the spatial decomposition, and shows good performance
only for a large spatial grids. m = 4096 is too small, resulting in overhead preventing any
speedup of parallel algorithm. In contrast, while the parareal method required 4 iteration
to converge, the total speedup is significant, over 13 times using 16 threads.

4 Conclusions

In this work, the parallel algorithm for solving the initial boundary problem for the
time-fractional diffusion equation is implemented on the base of the parareal method.
The algorithm is based on the finite-difference scheme for approximating the differential
equation and the sweep method for solving the systems of linear algebraic equations.

The parallel implementation is based on the time domain decomposition and parareal
method. The algorithm is implemented for the multicore processors using the OpenMP
technology. The numerical experiments were performed to investigate the efficiency of
the developed parallel algorithm. The parallel algorithm reduces the computing time up
to 13 times using the 16-core processor.
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AHHOTAITNS

Cratbs mocBsiena pa3padborke 3O HEKTUBHBIX MaPAJLICILHBIX aJTOPUTMOB
pelleHns HadaIbHO-KPAEBOU 3a1a4u i ypaBHeHns 1uddy3un ¢ 1poOHOI
[IPOM3BO/IHOI 110 BpeMeHHU. T paIninoOHHbIe TOAXOIbI K PACIaPaJIIe IMBAHUIO
OCHOBAHBI Ha JIEKOMITO3UIIUN MTPOCTpaHcTBeHnoit obmactu. Meros Parareal,
HaIIPOTHUB, OCHOBAH HA JEKOMIIO3UIINA BPEMEHHON 00JIACTH M MTEPATHBHOM
nporenype “‘mpeaukTop-koppekTop’. BeicTpeiit pemarens Ha rpyboit cer-
K€ UCIOJIB3YEeTCs JJIsi HOCTPOEHNUST HAYAJIBHBIX TPUOJINKEHW JJIsT 1013314
(perraeMbIX TOYHBIMU PeraTessiMi Ha 60J1ee MEJIKIX CeTKax) U JJIs KOpPeK-
TUPOBKU perrennii noxzagad. [log3asatun MoryT perrarbes HE3aBUCHMO JIJIsT
KasKJIOr0 MOJIBIHTEPBAJIA BPEMEHU. DTO MO3BOJISIET Peain30BaTh 3hdeKTUB-
HBIE TTIAPAJIEIbHBIE AJITOPUTMBI JJISI PA3IMIHBIX BBICOKOITIPON3BOIUTETHHBIX
apxXuTeKTyp. B HacTosilliee BpeMsi TaHHBI METOJ, MHUPOKO UCIIOIH3YeTCs B
3ajiadax JJisl Kjaccuieckux audepeHimabHbIX YPaBHEHUN € eJIBIMU 110~
PAIKaMU IIPOM3BOIHBIX, TOPA3/I0 PEXKe UCIOJIb3YETCs JJIsA TPOOHBIX ypaBHe-
uuit. B mammoit pabore anropurm Parareal pyist perenns HagaIbHO-KPaeBoii
3ajadu s ypaBHeHusi nuddy3un ¢ ApOOHON MTPOM3BOIHON IO BPEMEHH
peaim30BaH Jjis MHOTOSIIEPHBIX IIPOIECCOPOB C MCIIOJIb30BAHUEM TEXHOJIO-
run OpenMP. IIpoBejieHbl YnC/IeHHBIE SKCIIEPUMEHTHI Il OIeHKH 3 dek-
THUBHOCTH ITapaJUIeJIbHON peasiM3aluu U CpaBHeHus ajropurma Parareal c
TPAJAIIIOHHON JTEKOMITO3UIINEH B MMPOCTPAHCTBEHHON 00/IACTH.

KioueBnie cioBa: dpobras npoudsodnas Kanymo, ypasuernue duddysuu
¢ 0pobroti NPouseodnoti No 6PEMEHU, NAPAANEALHBIE GOIMUCAEHUA, METOOD
Parareal.
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