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Computer design of cylindrical cloaking shell

for the magnetostatics model

The problem of designing multilayer cylindrical radially anisotropic and isotropic
shielding cloaks is investigated. Using the optimization method the design problem
is reduced to finite-dimensional extremum problem, for which an efficient numerical
algorithm based on the particle swarm optimization method is developed. Com-
putational experiments have shown that the proposed method allows to design
multilayer shielding cloak which has high performance and simplicity of technical
implementation.
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Introduction

The problems of magnetic cloaking have received great development in recent years. It is

related with important technological applications in biomedical processes and magneti-

cally sensitive devices.

The first works in this field [1] were associated with using the tranformation optics

(TO) method developed in the pioneering works [2, 3]. We emphasize that applying the

TO method leads to singular solutions that are difficult to implement in practice.

Later, a group of authors [4,5] proposed another scheme for designing magnetic cloak-

ing devices which is free from the mentioned drawback but it provides only approximate

cloaking effect.

Another way to overcome mentioned drawbacks is to use the inverse design method

based on the optimization method of solving inverse problems [6]. In a series of our own

papers [7–13], we use this method for theoretical and numerical studies of different types

of cloaking problems.
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In this paper, we use the inverse design method to solve the problem of designing

a magnetic shielding cloak consisting of a finite number of layers filled with anisotropic

or isotropic materials. Based on computational experiments, we will show that our al-

gorithm allows to design a highly efficient shielding cloak that has a simple technical

implementation.

1 Statement of direct and inverse problems of magnetostatics
on a plane

Let us first formulate the direct problem of magnetostatics considered in the entire plane

R2 filled with a homogeneous medium with constant magnetic permeability µ0 > 0. We

assume that R2 has a constant magnetic field Ha = −∇Φa corresponding to the magnetic

potential Φa(x) = −(H0
ar/b) cosϕ, where H0

a = const, r, ϕ are the polar coordinates of

the point x ∈ R2.

We consider a physical scenario when an object (Ω, µ) is placed into the plane, where

Ω is a ring shell a < r < b, and µ is a magnetic permeability of medium filling the domain

Ω. Then the field Φa changes and takes the form Φ = Φa + Φs, where Φs is perturbation

of the field Φa caused by the placing of object into R2. To find the scattered response Φs
it is necessary to formulate the direct problem of magnetostatics corresponding to the

physical scenario described above.

We introduce two sets: Ω0 = {x ∈ R2 : |x| < a} and ΩM+1 = {x ∈ R2 : |x| > b} and

replace the “continuous” shell Ω by a multilayer shell consisting of a finite number M of

layers
Ωm = {Rm−1 < r = |x| < Rm, m = 1,M}, R0 = a, RM = b,

of the same width d = (b− a)/M . Each of them is filled with a homogeneous anisotropic

(generally) medium, whose constant magnetic permeability µm,m = 1,M , is described by

the diagonal tensor in polar coordinates µm = diag (µrm, µϕm), where µrm (or µϕm) is the

radial (or tangential) component of the tensor µm . In what follows, to describe a piecewise

homogeneous medium filling Ω, we will use the 2M -dimensional vector m = (µr1, µϕ1,

..., µrM , µϕM ), composed of the magnetic permeability components of all layers Ωm,

m = 1,M , and the pair (Ω,m) will be referred to as a magnetic shell.

Denote by Φm the restriction Φ|Ωm
of the total field Φ = Φa + Φs to the subdomain

Ωm, m = 0,M + 1. Then the direct problem of finding the total field Φ = Φa+Φs reduces

to finding all M+2 fields Φm in the domains Ωm, m = 0,M + 1, by solving the following

magnetic conjugation problem:

∆Φ0 = 0 in Ω0, div (µm∇Φm)=0 in Ωm, m = 1,M, ∆ΦM+1 = 0 in ΩM+1, (1)

Φm = Φm+1, µrm
∂Φm
∂r

= µr(m+1)
∂Φm+1

∂r
on r = Rm, m = 0,M, (2)

Φ0(x) = O(1) as r = |x| → 0, ΦM+1(x)→ Φa(x) as r →∞, (3)

considered in the entire plane R2. In (2) µr0 = µr(M+1) = µ0 is constant magnetic

permeability of homogeneous isotropic medium filling domains Ω0 and ΩM+1.
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Similarly to works [14,15] devoted to solving related problems of electrostatic cloaking,

we represent the fields Φ0, Φ1, ..., ΦM , ΦM+1 as

Φ0(r, ϕ) = (A0r/b) cosϕ in Ω0, (4)

Φm(r, ϕ) = ((r/b)γmAm + (b/r)γmBm) cosϕ in Ωm, m = 1,M, (5)

ΦM+1(r, ϕ) = (−H0
ar/b+BM+1b/r) cosϕ in ΩM+1. (6)

Here A0, Am, Bm, BM+1, m = 1,M are unknown coefficients, and γm is the coefficient

(degree) of medium anisotropy in Ωm, defined by the formula γm=
√
µϕm/µrm, m=1,M .

It is easy to check that all the equations in (1) and conditions (3) are satisfied for

functions Φm, m = 0,M + 1, defined in (4)–(6) for any values of the coefficients A0,

Am, Bm, BM+1, m = 1,M . It remains to choose them so that the boundary conditions

(2) are satisfied. Substituting (4)–(6) into (2), we get:

−A0 +A1c
1−γ1
0 +B1c

1+γ1
0 = 0,

−µ0A0 + µr1A1γ1c
1−γ1
0 − µr1B1γ1c

1+γ1
0 = 0,

−Amc−γmm −Bmcγmm +Am+1c
−γm+1
m +Bm+1c

γm+1
m =0,

−µrmAmγmc1−γmm + µrmBmγmc
1+γm
m + µr(m+1)Am+1γm+1c

1−γm+1
m −

−µr(m+1)Bm+1γm+1c
1+γm+1
m = 0, m = 1,M − 1,

−AM −BM +BM+1 = H0
a ,

−µrMAMγM + µrMBMγM − µM+1BM+1 = µM+1H
0
a .

(7)

Here cm = b/Rm, m = 0,M − 1. Equalities (7) are a system of 2M + 2 linear algebraic

equations with respect to 2M + 2 unknown coefficients A0, Am, Bm, BM+1, m = 1,M ,

which must be solved to find the fields Φm. It is easy to establish that the system matrix

(7) is non-singular, except for some special values of magnetic permeability. Therefore,

the system (7) can be solved with respect to the unknown coefficients.

Below we will also consider a simpler particular case of the system (7), corresponding

to the anisotropy coefficients γm = 1, m = 1,M . Such a case corresponds to the design

of a completely isotropic multilayer shell (Ω,m). Here m = (µ1, µ2, ..., µM ) where µm are

the constant magnetic permeabilities of homogeneous isotropic layers Ωm, m = 1,M .

Denote further by Φ[m]=(Φ0[m], Φ1[m], ..., ΦM+1[m]), where m = (µr1, µϕ1, ..., µrM ,

µϕM ), solution of problem (1)-(3) corresponding to the tensor magnetic permeability µm
in Ωm, m = 1,M , and the constant magnetic permeability µ0 in Ω0 and ΩM+1. We put

Ωe = ΩM+1 ∩BR, where BR is a circle of large radius R containing Ω inside it.

Below we will consider an inverse problem called the magnetic shielding problem

[10, 11]. It consists in finding the magnetic permeability vector m = (µr1, µϕ1, ..., µrM ,

µϕM ), based on the following condition: ∇Φ0[m] = 0, i.e. Φ0[m] = const in Ω0.
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2 Statement of the control problem

To solve the inverse problem, we apply the optimization method [6]. Following it, we

define the cost functional:

Ji(m)=
‖∇Φi[m]‖L2(Ω0)

‖∇Φa‖L2(Ω0)
, ‖∇Φa‖2L2(Ω0)=

∫
Ω0

|∇Φa|2dx, ‖∇Φi[m]‖2L2(Ω0)=

∫
Ω0

|∇Φi[m]|2dx,

and the following bounded set called the control set:

K = {m = (µr1, µϕ1, ..., µrM , µϕM ) ∈ R2M : 0 < µmin ≤ (µrm, µϕm) ≤ µmax}. (8)

Here, the given positive constants µmin and µmax determine the lower and upper bounds

of the set K. Let us formulate the extremum shielding problem having the form

Ji(m)→ inf, m ∈ K. (9)

We note that the value Ji(m) is associated with shielding performance of (Ω,m)

via inverse dependence: the smaller value Ji(m) corresponds to the higher shielding

performance of (Ω,m), and vice versa [7,10–13]. Recall that there exists a solution of the

problem (9) while the set K is closed and bounded in the space R2M and the function

Ji(m) is continuous on K [13, ch. 6]. It remains to find this solution using some algorithm.

3 Analysis of computational experiments results

Let us discuss here the results of numerical solution of the problem (9) using the particle

swarm optimization method (PSO) [16] for the initial data: a = 0.04 m, b = 0.05 m,

µ0 = 1, R = 3 m, and two pairs of values (0.08; 20) and (1; 5000) defining the boundaries

µmin and µmax of control set K in (8).

Our first test is related with solving the extremum problem (9) using the PSO for a

fully anisotropic multilayer shell (Ω,m) for the first pair µmin = 0.08 and µmax = 20.

Optimization analysis using PSO for different values of M led to the results presented

in Table 1 in the form of optimal values of the radial and tangential components µoptrm and

µoptϕm of the magnetic permeabilities of layers (Ωm, µm) and the corresponding minimum

value Ji(m
opt) of the functional Ji, where mopt = (µoptr1 , µ

opt
ϕ1 , ..., µ

opt
rM , µ

opt
ϕM ).

From Table 1, it can be seen, in particular, that the optimal values of the magnetic

permeabilities of all layers found using the PSO method coincide in each layer for any

M = 1, 12, i.e. all layers are filled with the same anisotropic medium with permeabilities

µoptr = 0.08 and µoptϕ = 20. At the same time the values Ji(m
opt) are equal to 3.62×10−2

and do not change with increasing M , where the latter value corresponds to the weak

shielding performance of the designed anisotropic shielding cloak. Thereby, from Table 1

it follows that solving the problem (9) in the case of a completely anisotropic shell

for the first pair of parameters µmin = 0.08 and µmax = 20 fails to achieve neither

high shielding performance due to the multilayer design of shielding cloak, nor its easy

technical implementation due to the anisotropy γm = 15.8 of the layers.
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Table 1: Shielding problem: µmin=0.08, µmax=20, contrast=µmax/µmin=250, γm=15.8

M (µoptr1 , µ
opt
ϕ1 ) (µoptr2 , µ

opt
ϕ2 ) ... (µoptrM , µ

opt
ϕM ) Ji(m

opt)

1 (0.08, 20) 3.62·10−2

2 (0.08, 20) (0.08, 20) 3.62·10−2

4 (0.08, 20) (0.08, 20) (0.08, 20) (0.08, 20) 3.62·10−2

6 (0.08, 20) (0.08, 20) (0.08, 20) (0.08, 20) 3.62·10−2

8 (0.08, 20) (0.08, 20) (0.08, 20) (0.08, 20) 3.62·10−2

10 (0.08, 20) (0.08, 20) (0.08, 20) (0.08, 20) 3.62·10−2

12 (0.08, 20) (0.08, 20) (0.08, 20) (0.08, 20) 3.62·10−2

For simplicity of implementation, all layers of the designed shielding cloak must be

filled with isotropic media (i.e. γm = 1), which correspond to available natural materials.

Therefore, our next test 2 is related with solution of the problem (9) using PSO for the

case of a completely isotropic multilayer shielding cloak (Ω,m), where γm = 1, for the

second pair of parameters µmin = 1 and µmax =5000. Recall that the value µmin = 1

describes with great accuracy the magnetic permeability of air, wood and other natural

materials, while the value µmax = 5000 describes the permeability of iron.

Applying PSO for solving (9) leads to the results listed in Table 2 as the optimal values

of the constant permeabilities µopt1 , µopt2 , µoptM−1, µoptM and the corresponding minimum

value Ji(m
opt) of functional Ji for even M = 2, 12.

Table 2: Shielding problem: µmin=1, µmax=5000, contrast=µmax/µmin=5000, γm=1

M µopt1 µopt2 µoptM−1 µoptM Ji(m
opt)

2 5000 5000 2.22·10−3

4 5000 1 5000 5000 2.49·10−4

6 5000 1 5000 5000 8.57·10−5

8 5000 1 5000 5000 4.83·10−5

10 5000 1 5000 5000 3.49·10−5

12 5000 1 5000 5000 2.87·10−5

The results shown in Table 2 demonstrate that the obtained optimal solution mopt,

up to the last permeability, obeys to an analogue of the bang-bang principle in the sense

that the following relation holds

µopt1 = µopt3 = ... = µoptM−1 = µmax, µopt2 = µopt4 = ... = µoptM−2 = µmin,

called in [10,11] as the alternating design scheme (see [12,13] for more details), while the

magnetic permeability µoptM in the last layer always takes the value of µmax = 5000.

It follows from Table 2 that for the optimal solution mopt of the shielding problem

(9) in the test 2 the value Ji(m
opt) of functional Ji decreases from value 2.22 · 10−3 for
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M = 2 to value 2.87 · 10−5 for M = 12 which corresponds to very high shielding perfor-

mance of the respective shield (Ω,mopt). Moreover, all optimal permeabilities obtained

in Table 2 corresponds only to two readily available natural materials. Therefore, the

designed shielding cloak is technically easily implemented.

In conclusion, the optimization analysis showed that a high performance of the de-

signed magnetic shielding device can be achieved when using multilayer cloak consisting

of several isotropic homogeneous layers with optimal constant permeabilities obtained

by the developed numerical algorithm based on PSO. We emphasize that high shield-

ing performance and simplicity of technical realization can be achieved without use of

anisotropic methamaterials, but using only two natural materials with high contrast.
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Спивак Ю.Э. Компьютерный дизайн цилиндрической маскировочной
оболочки для модели магнитостатики. Дальневосточный математиче-
ский журнал. 2022. Т. 22. № 2. С. 238–244.

АННОТАЦИЯ

Исследуется задача дизайна многослойных цилиндрических радиально-
анизотропных и изотропных экранирующих оболочек. С использовани-
ем оптимизационного метода задача дизайна сводится к конечномерной
экстремальной задаче, для решения которой разрабатывается эффек-
тивный численный алгоритм, основанный на методе роя частиц. Вычис-
лительные эксперименты показали, что предложенный метод позволяет
спроектировать многослойную экранирующую оболочку, обладающую
высокой эффективностью и простотой технической реализации.

Ключевые слова: оптимизационный метод, магнитная проницаемость,
многослойный дизайн, метод роя частиц, экранирующая оболочка.
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