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Computer design of cylindrical cloaking shell
for the magnetostatics model

The problem of designing multilayer cylindrical radially anisotropic and isotropic
shielding cloaks is investigated. Using the optimization method the design problem
is reduced to finite-dimensional extremum problem, for which an efficient numerical
algorithm based on the particle swarm optimization method is developed. Com-
putational experiments have shown that the proposed method allows to design
multilayer shielding cloak which has high performance and simplicity of technical
implementation.
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Introduction

The problems of magnetic cloaking have received great development in recent years. It is
related with important technological applications in biomedical processes and magneti-
cally sensitive devices.

The first works in this field [1] were associated with using the tranformation optics
(TO) method developed in the pioneering works [2,3]. We emphasize that applying the
TO method leads to singular solutions that are difficult to implement in practice.

Later, a group of authors [4,5] proposed another scheme for designing magnetic cloak-
ing devices which is free from the mentioned drawback but it provides only approximate
cloaking effect.

Another way to overcome mentioned drawbacks is to use the inverse design method
based on the optimization method of solving inverse problems [6]. In a series of our own
papers [7—13], we use this method for theoretical and numerical studies of different types
of cloaking problems.
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In this paper, we use the inverse design method to solve the problem of designing
a magnetic shielding cloak consisting of a finite number of layers filled with anisotropic
or isotropic materials. Based on computational experiments, we will show that our al-
gorithm allows to design a highly efficient shielding cloak that has a simple technical
implementation.

1 Statement of direct and inverse problems of magnetostatics
on a plane

Let us first formulate the direct problem of magnetostatics considered in the entire plane
R? filled with a homogeneous medium with constant magnetic permeability o > 0. We
assume that R? has a constant magnetic field H, = —V®, corresponding to the magnetic
potential ®,(x) = —(H%r/b) cos ¢, where H) = const, r, ¢ are the polar coordinates of
the point x € R2.

We consider a physical scenario when an object (€2, i) is placed into the plane, where
Q is aring shell @ < r < b, and p is a magnetic permeability of medium filling the domain
Q. Then the field &, changes and takes the form ® = &, + &, where @, is perturbation
of the field ®, caused by the placing of object into R2. To find the scattered response @,
it is necessary to formulate the direct problem of magnetostatics corresponding to the
physical scenario described above.

We introduce two sets: Qg = {x € R? : x| < a} and Qp11 = {x € R? : x| > b} and
replace the “continuous” shell 2 by a multilayer shell consisting of a finite number M of

layers
Qm ={Rm-1<r=x| <Ry, m=1,M}, Ry=a, Ry =0,

of the same width d = (b— a)/M. Each of them is filled with a homogeneous anisotropic
(generally) medium, whose constant magnetic permeability ji,,,, m = 1, M, is described by
the diagonal tensor in polar coordinates fi,, = diag (frm, fom), Where iy, (Or fieom ) is the
radial (or tangential) component of the tensor w.,, . In what follows, to describe a piecewise
homogeneous medium filling 2, we will use the 2M-dimensional vector m = (jt,1, fte1,
ey MM, HoM), composed of the magnetic permeability components of all layers €,,,

m =1, M, and the pair (2, m) will be referred to as a magnetic shell.

Denote by ®,, the restriction ®|q  of the total field ® = &, + P, to the subdomain
Qm, m =0, M + 1. Then the direct problem of finding the total field ® = ®&,+ P reduces
to finding all M + 2 fields ®,, in the domains ,,,, m = 0, M + 1, by solving the following

magnetic conjugation problem:

A(I)() =0in Q(), div (vaq)m)zo in Qm, m = ].,M, A(I)M+1 =0in Q]y[+1, (1)

0P 0P
D, = Py, Mrm?m = Hr(m+1) (;::Fl onr = Ry, m=0,M, (2)
Dy(x) =0(1) asr =|x| =0, Dpry1(x) = Pu(x) as r — o0, (3)
considered in the entire plane R2. In (2) .o = Hr(M41) = Mo is constant magnetic

permeability of homogeneous isotropic medium filling domains ¢ and Qp741.
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Similarly to works [14,15] devoted to solving related problems of electrostatic cloaking,
we represent the fields ®q, 1, ..., Pps, Pasy1 as

®o(r, p) = (Aor/b) cos p in Qo,
D, (r,0) = ((r/b)"™ A, + (b/7)" B,,) cos in Qp,y, m =1, M, (
Pari1(r,0) = (—H2r /b + Bar1b/r) cos ¢ in Qary1. (

—~
D O
= —

Here Ag, Am, Bm, By+1, m = 1, M are unknown coefficients, and +,, is the coefficient

(degree) of medium anisotropy in €,,,, defined by the formula v, =+/tem/frm, m=1, M.
It is easy to check that all the equations in (1) and conditions (3) are satisfied for
functions ®,,,, m = 0, M + 1, defined in (4)—(6) for any values of the coefficients Ao,
A, By, Byy1, m = 1, M. It remains to choose them so that the boundary conditions
(2) are satisfied. Substituting (4)—(6) into (2), we get:

_AO + Alc(l)—’)’l + Blc(l)-‘r’h _ 0,

Y

—po Ao + priAimicy " — i Bimiey T =0,

— A = Bl 4 A6 + By clmt =0,
_,urmAm’YmC};;%” + MrmBm’)/mC}nJr%" + MT(m—i—l)Am+1’7m+1cin7%n+l — (7)
— i (mt1) Bt Ymi16m =0, m=1,M —1,
—Ay — By + Byyr = H,

—trm Anvyns + penr Biysr — i1 Bargr = o1 HY.

Here ¢,, = b/R,,, m = 0, M — 1. Equalities (7) are a system of 2M + 2 linear algebraic
equations with respect to 2M + 2 unknown coefficients Ao, A, By, Bary1, m = 1, M,
which must be solved to find the fields ®,,. It is easy to establish that the system matrix
(7) is non-singular, except for some special values of magnetic permeability. Therefore,
the system (7) can be solved with respect to the unknown coefficients.

Below we will also consider a simpler particular case of the system (7), corresponding
to the anisotropy coefficients ,, = 1, m = 1, M. Such a case corresponds to the design
of a completely isotropic multilayer shell (2, m). Here m = (u1, o, ..., ias) where i, are
the constant magnetic permeabilities of homogeneous isotropic layers Q,,, m = 1, M.

Denote further by ®[m]=(®o[m], ®;[m], ..., ®ar41[m]), where m = (1, i1, -y foras,
tonr), solution of problem (1)-(3) corresponding to the tensor magnetic permeability fi,,
in Q,,, m =1, M, and the constant magnetic permeability uo in Qo and Qp7,1. We put
Q. = Qpr41 N By, where By is a circle of large radius R containing 2 inside it.

Below we will consider an inverse problem called the magnetic shielding problem
[10,11]. It consists in finding the magnetic permeability vector m = (1, fhot, -y frrs
ponr), based on the following condition: V®¢[m] = 0, i.e. ®o[m] = const in Q.
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2 Statement of the control problem

To solve the inverse problem, we apply the optimization method [6]. Following it, we
define the cost functional:

[V®;[m]l12 (0
Hm) = ) 9 0, = [ 190k, [V )30, = [ 19;im]Pdx

V@4l £2(0)
Qo Qo

and the following bounded set called the control set:

K= {m - (/1/7'17,“:,017 ---7,“7'M7/1/Lp1\/1) S RQM 10 < Hmin S (,Urmﬁf"tpm) S Mmaz}~ (8)

Here, the given positive constants f,i, and g, determine the lower and upper bounds
of the set K. Let us formulate the extremum shielding problem having the form

Ji(m) — inf, me K. (9)

We note that the value J;(m) is associated with shielding performance of (£2,m)
via inverse dependence: the smaller value J;(m) corresponds to the higher shielding
performance of (€2, m), and vice versa [7,10-13]. Recall that there exists a solution of the
problem (9) while the set K is closed and bounded in the space R*M
Ji(m) is continuous on K [13, ch. 6]. It remains to find this solution using some algorithm.

and the function

3  Analysis of computational experiments results

Let us discuss here the results of numerical solution of the problem (9) using the particle
swarm optimization method (PSO) [16] for the initial data: « = 0.04 m, b = 0.05 m,
o = 1, R = 3 m, and two pairs of values (0.08;20) and (1;5000) defining the boundaries
tmin a0d fimaq of control set K in (8).
Our first test is related with solving the extremum problem (9) using the PSO for a
fully anisotropic multilayer shell (€2, m) for the first pair pmin = 0.08 and e, = 20.
Optimization analysis using PSO for different values of M led to the results presented

in Table 1 in the form of optimal values of the radial and tangential components p¢2! and

u‘;’;fl of the magnetic permeabilities of layers (,,,, ity ) and the corresponding minimum

value J;(m°P?) of the functional .J;, where m°r* = (u;”ft,ygﬁt, ...,uiﬁt[,u;’}@).

From Table 1, it can be seen, in particular, that the optimal values of the magnetic
permeabilities of all layers found using the PSO method coincide in each layer for any
M =1,12, i.e. all layers are filled with the same anisotropic medium with permeabilities
Pt = 0.08 and pZP* = 20. At the same time the values .J;(m®") are equal to 3.62 x 102
and do not change with increasing M, where the latter value corresponds to the weak
shielding performance of the designed anisotropic shielding cloak. Thereby, from Table 1
it follows that solving the problem (9) in the case of a completely anisotropic shell
for the first pair of parameters p;, = 0.08 and pi,q, = 20 fails to achieve neither
high shielding performance due to the multilayer design of shielding cloak, nor its easy
technical implementation due to the anisotropy v, = 15.8 of the layers.
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Table 1: Shielding problem: fi,,;,=0.08, tmar=20, contrast={imaz/ tmin=250, ¥m=15.8
M [ (i pB) | (s 1) (uhy, mhy) | Ji(meP?)
1 (0.08, 20) 3.62-1072
2 (0.08,20) (0.08,20) 3.62-1072
4 (0.08, 20) (0.08,20) | (0.08,20) (0.08, 20) 3.62.102
6 (0.08,20) (0.08,20) | (0.08,20) (0.08, 20) 3.62:1072
8 (0.08, 20) (0.08,20) | (0.08,20) (0.08, 20) 3.62:1072
10 | (0.08,20) (0.08,20) | (0.08,20) (0.08, 20) 3.62-1072
12 | (0.08,20) (0.08,20) | (0.08,20) (0.08, 20) 3.62-102

For simplicity of implementation, all layers of the designed shielding cloak must be
filled with isotropic media (i.e. 7y,, = 1), which correspond to available natural materials.
Therefore, our next test 2 is related with solution of the problem (9) using PSO for the
case of a completely isotropic multilayer shielding cloak (€2, m), where v, = 1, for the
second pair of parameters fyin, = 1 and fmar =5000. Recall that the value pin = 1
describes with great accuracy the magnetic permeability of air, wood and other natural
materials, while the value p,,4,, = 5000 describes the permeability of iron.

Applying PSO for solving (9) leads to the results listed in Table 2 as the optimal values
of the constant permeabilities u$P*, usP*, uSb' |, bt
value J;(m°P?) of functional J; for even M = 2,12.

and the corresponding minimum

Table 2: Shielding problem: fi;min=1, flmaz=5000, contrast={imaz/tmin=5000, vm=1

M| ™ | ™ [ eyt | oegr | Ji(meP)
2| 5000 | 5000 2.22:103
4 | 5000 | 1 | 5000 | 5000 | 2.49-10~*
6 | 5000 | 1 | 5000 | 5000 | 8.57-107°
8 | 5000 | 1 | 5000 | 5000 | 4.83-107°
10 [ 5000 | 1 | 5000 | 5000 | 3.49-10°7
12 [ 5000 | 1 | 5000 | 5000 | 2.87-10~7

The results shown in Table 2 demonstrate that the obtained optimal solution m°P?,
up to the last permeability, obeys to an analogue of the bang-bang principle in the sense
that the following relation holds

opt

opt
My

— _ opt _
e = MUpar—1 = Bmaxs

_ opt
= My

opt _ — _
co = Upr_o = Hmin,

:ﬂg

opt
Ho

called in [10,11] as the alternating design scheme (see [12,13] for more details), while the
magnetic permeability ,ujo\gt in the last layer always takes the value of ti,,q, = 5000.

It follows from Table 2 that for the optimal solution m°P? of the shielding problem
(9) in the test 2 the value J;(m°P?) of functional J; decreases from value 2.22 - 102 for
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M = 2 to value 2.87 - 107° for M = 12 which corresponds to very high shielding perfor-
mance of the respective shield (2, m°P*). Moreover, all optimal permeabilities obtained
in Table 2 corresponds only to two readily available natural materials. Therefore, the
designed shielding cloak is technically easily implemented.

In conclusion, the optimization analysis showed that a high performance of the de-
signed magnetic shielding device can be achieved when using multilayer cloak consisting
of several isotropic homogeneous layers with optimal constant permeabilities obtained
by the developed numerical algorithm based on PSO. We emphasize that high shield-
ing performance and simplicity of technical realization can be achieved without use of
anisotropic methamaterials, but using only two natural materials with high contrast.
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Cnusax 10. 5. KoMrbioTepHbIil mu3aifH MUIXHIPUIECKON MACKHPOBOTHOM

000JIOUKY JIJIsT MOJEJIN MAarHUTOCTATUKU. /J[aIbHEBOCTOIHBIH MaTeMaTHde-
ckmit Kypraj. 2022. T. 22. Ne 2. C. 238-244.

AHHOTAIINS

Uccemyercst 3aa1ua u3aifHa MHOTOCJIONHBIX IUJINHIPAIECKUX PaIHATBHO-
AHW30TPOIHBIX M U30TPOIHBIX IKpaHUPYOMuX 0601049eK. C UCII0/Ib30BaHU-
€M OIITUMHU3AIMOHHOIO MEeTO/a 3a/1a4a Ju3aliHa CBOIUTCS K KOHEYHOMEPHOH
9KCTPEMAJILHON 3aj1ade, I peIeHns KOTOpoit paspadarsiBaeTcs 3P der-
TUBHBIN YUCJIEHHBIN AJITOPUTM, OCHOBAHHBII HA METOJIE POst 9acTull. Boraunc-
JINTETbHBIE SKCIEPUMEHTHI TIOKA3AJIM, 9TO MPEJJIOYKEHHBI METOJ] II03BOJISEeT
CIIPOEKTHPOBATH MHOT'OCJIONHYIO SKPAHUPYIONLYI0 000JI0YKY, 0018 IaI0ILyI0
BBICOKO# 3 PEKTUBHOCTHIO M MMPOCTOTON TEXHUIECKON PEATUIAIIM.

Kutrouesbie ciioBa: onmumu3ayuonmsii mMemod, Maehummas npoHULGeMoCmMb,
MHO20CA0TNHBIT JU3atiH, MeMOd POS HACTNUY, SKPAHUPYIOWAL 000A0YKE.
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