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Influence of weighted function exponent

in WFEM on error of solution for

hydrodynamic problems with singularity

The concept of an Rν-generalized solution for a hydrodynamic problem with reen-
trant corner on the boundary of a polygonal domain is defined. An approximate
method for solving the problem is constructed. A numerical analysis is carried out
and the question of the influence of the weighted function exponent in the weighted
finite element method on the error of the solution in the vicinity of the reentrant
corner in the norm of the space C(Ω̄) is experimentally studied. A comparative
analysis has been carried out and the advantage of the weighted method over the
classical approach has been shown.
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Introduction

At present, mathematicians and engineers are of particular interest in solving problems

describing natural physical processes in polygonal non-convex domains Ω with a corner

ω on the boundary greater than π. There is a task class for which a generalized solution

exists and belongs to the space W 1
2 (Ω), but it does not belong to the Sobolev space

W 2
2 (Ω). According to the principle of agree estimates there is no classical finite difference

method (CFDM) or finite element method (CFEM), whose solution would converge to the

exact one at the rate of O(h)(where h is the grid step). In reality, the order of convergence

with respect to h is substantially less than unity and decreases with increasing ω. As for

the hydrodynamic problems, we single out the following approaches to research based

on: 1) the separation of singular and regular components of the solution, approximation

of the coefficients of the 1st and, based on this, finding the 2nd [1]; 2) mesh thickening in

the vicinity of ω [2]. Known methods allow obtain the required 1st order of convergence,

but in the O(1)-vicinity of ω modifications to the CFEM are required.
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This paper proposes a fundamentally different idea. The solution is defined as Rν-

generalized in weight sets. The approach is based on the introduction of the weight

function into the integral identities, equal to the distance from the point to the singularity

point in the δ-neighbourhood of the reentrant corner, and the constants δ outside it.

Thanks to this, the influence of the corner singularity can be suppressed. This idea was

first proposed for solving elliptic problems (see [3]). For the Stokes problem in [4] a

weight analogue of the LBB condition is established. The existence and uniqueness of

an Rν-generalized solution in weighted sets [5] is proved. Numerical methods proposed

for the elliptic problems [6–8] with different values of corners ω. The paper considers the

stationary problem flow of a homogeneous incompressible viscous fluid, obtained as a

result of discretization in time of the Navier–Stokes equations describing it in convective

form. For the numerical implementation of the problem, based on the Rν-generalized

solution, a weighted FEM (WFEM) is constructed. A series of computational experiments

was carried out for an angle greater than π, as with the help of the classical FEM, and

the proposed WFEM. Comparative analysis is carried out in the norm of the space C(Ω̄).

1 Problem statement and definition of Rν-generalized solution

Let Ω = {x : x = (x1, x2)} ⊂ R2 be a polygonal domain with boundary Γ, Ω̄ = Ω ∪ Γ.

Consider a nonlinear problem: find the velocity w = (w1, w2) and the pressure q, that is,

the solution of the system and boundary condition

αw −∇ · (ν̄∇w) + (w · ∇)w +∇q = f , ∇ ·w = 0 in Ω, w = g on Γ, (1)

where α, ν̄ known positive constant, f and g known forces on Ω and Γ respectively.

Problem (1) is nonlinear due to the presence of the term (w ·∇)w. The most appropriate

way to linearized it is Picard’s iterative procedure [9]: at the n-th iteration, we solve

the problem with the linear term (wn−1 · ∇)wn , where wn−1 computed in the previous

iteration. If the norm of the f is bounded and ν̄ is not so small, then there exists a

solution (1) (w, q) and wn → w, qn → q for n → ∞ for any initial approximation w0

satisfying (1). Thus, it is necessary to solve the following problem: find u = (u1, u2) and

p, satisfying the system of equations and the boundary condition:

αu−∇· (ν̄∇u) + (dn ·∇)u+∇p = f , ∇·u = 0 in Ω, u = g on Γ, (2)

where dn ∈ L∞(Ω) is an approximate of the velocity from previous iteration, ∇·dn = 0.

A feature of the consideration of problem (1) is that the domain Ω is a non-convex

polygon with one corner ω with vertex at the origin (0, 0) the value of which on the

boundary is greater than π. Thus, in accordance with the principle of consistent estimates,

any FEM cannot give a better result in order of accuracy of the solution (see [10]) than

‖∇(u− uh)‖L2(Ωh) + h−β‖u− uh‖L2(Ωh) = O(hβ).

For example, if ω takes a value 3π
2 , then β ≈ 0.54. In a convex domain β equals to 1. Now

we define an Rν-generalized solution to the problem (2). The idea of an Rν-generalized
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solution is based on the introduction of the weight function ρ(x) into the integral identity

to some positive power ν, and

ρ(x) = {‖x‖, if x ∈ Ωδ; δ, if x ∈ Ω̄\Ωδ},

where Ωδ = {x ∈ Ω̄ : ‖x‖ ≤ δ � 1}. Now, we introduce the necessary sets of generalized

functions (see [11–13]). Denote by W 1
2,η(Ω, δ) the set of functions z(x), satisfying the

conditions:

0 < C1 ≤ ‖z‖L2,η(Ω\Ωδ), |D
kz(x)| ≤ C2δ

η−τρτ−η−k(x),x ∈ Ωδ, (3)

and having a limited norm

‖z‖W 1
2,η(Ω) :=

√∑
|l|≤1

‖ρη|Dlz|‖2L2(Ω)

of W 1
2,η(Ω), where C2 is a positive constant and τ is a small positive parameter indepen-

dent from η, δ and z(x), k = 0, 1. Let W 1,0
2,η (Ω, δ) ⊂W 1

2,η(Ω, δ) be such that

W 1,0
2,η (Ω, δ) = {z ∈ C∞(Ω̄) : z = 0 on Γ, satisfies conditions (3)}

with bounded norm of W 1
2,η(Ω).

W
1/2
2,η (Γ, δ) = {s : if exists z ∈W 1

2,η(Ω, δ), that z = s on Γ}

with a

‖s‖
W

1/2
2,η (Γ,δ)

:= inf
z=s on Γ

‖z‖W 1
2,η(Ω).

Via L2,η(Ω, δ) denote the set of functions z(x) satisfying (3) if k = 0, with bounded norm

‖z‖L2,η(Ω) := ‖ρηz‖L2(Ω) of the space L2,η(Ω). L0
2,η(Ω, δ) is a subset of L2,η(Ω, δ) such

that z ∈ L0
2,η(Ω, δ) if and only if z ∈ L2,η(Ω, δ) and ‖ρηz‖L1(Ω) = 0. We will highlight

the spaces of vector functions in bold type.

Definition 1. The pair (uν , pν) ∈ W1
2,ν(Ω, δ) × L0

2,ν(Ω, δ) is called an Rν-generalized

solution of (2), uν satisfies a condition (2) almost everywhere on Γ, if

an(uν ,v)− b1(v, pν) = l(v), b2(uν , s) = 0 (4)

hold, ∀(v, s) ∈W1,0
2,ν(Ω, δ)× L0

2,ν(Ω, δ), f ∈ L2,ζ(Ω, δ),g ∈W
1/2
2,ζ (Γ, δ), ν ≥ ζ ≥ 0 :

an(uν ,v) =

∫
Ω

[
αuν · (ρ2νv) + ν̄∇uν : ∇(ρ2νv) + (dn · ∇)uν · (ρ2νv)

]
dx,

l(v) =

∫
Ω

f · (ρ2νv)dx, b1(v, pν) =

∫
Ω

pν ∇ · (ρ2νv)dx, b2(uν , s) =

∫
Ω

(ρ2ν s)∇ · uν dx.



228 A. V. Rukavishnikov

Table 1: WFEM ( δ = 0.01265 and ν = 1.6) and CFEM (GS).

ν∗ 0.24 0.26 0.28 0.3 0.32 0.34 0.36 GS

(∆, h) = (10−6, 0.005) 0.14 0.18 0.30 0.25 0.19 0.15 0.12 0.11

(∆, h) = (5 · 10−7, 0.005) 0.09 0.12 0.21 0.20 0.13 0.10 0.08 0.07

(∆, h) = (10−6, 0.0025) 0.30 0.44 0.86 0.47 0.31 0.24 0.20 0.17

(∆, h) = (5 · 10−7, 0.0025) 0.19 0.29 0.73 0.32 0.20 0.16 0.13 0.11

2 Construction of an approximate method for the problem

Let us construct a WFEM to find an approximate solution of (2), relying on the notion

of an Rν-generalized solution (4). For this purpose, we triangulate Th of Ω. To do this, we

divide Ω by triangles with sides of order h. We represent each of them as three triangles

Kij with vertices in the center masses of the main triangle. Each of Kij will be called

a FE, and Ωh =
⋃

Kij∈Th
Kij . Further, we will find sets of nodes for the velocity and

pressure. For the velocity, the set of FE vertices Rl and the midpoints of their sides Qk,

lying inside Ω will be denoted by SΩ, and on the boundary by SΓ, S = SΩ ∪ SΓ. The

common vertex (or the middle of the side) of two adjacent FEs is considered to be one

node. For the pressure, let’s denote by Z the set of nodes Zs coinciding with the nodes Rl
corresponding Ki. Zs and Zj coinciding with the node Rl, the vertices of two neighboring

elements are considered different nodes. For the velocity, to each node Pk of S we assign a

basis function ϕk(x) : ϕk(Pk) = 1 and ϕk(Pj) = 0, j 6= k, ϕk(x) is a quadratic function on

yours support. We define the space Xh as a linear span, spanned by a system of {ϕk}|S|k=1.

For the velocity field, we will use the space Xh = Xh×Xh. For the pressure, each node Zl
of Z is associated with a basis function ψl(x) : ψl(Zl) = 1 and ψl(Zj) = 0, j 6= l, ψl(x) is

a linear function on one finite element. We define the space Y h as a linear span, spanned

by the system of basis functions {ψl}|Z|l=1. Let us improve the pair of spaces Xh − Y h
as follows: 1) each ϕk(x) of the space Xh multiply by ρ−ν

∗
(x): χk(x) := ρ−ν

∗
(x)ϕk(x),

and multiply each ψl(x) of the space Y h by ρ−µ
∗
(x) : θl(x) := ρ−µ

∗
(x)ψl(x); 2) their

linear spans form FE spaces Wh and Qh, respectively. For the velocity field, we have

Wh = Wh ×Wh. Also Wh
0 = {vh ∈ Wh : vh(Pk) = 0, in all Pk ∈ SΓ}. Velocity field

uhν = (uhν,1, u
h
ν,2) and pressure phν have the form:

uhν,i(x) =

|S|∑
k=1

cikχk(x), i = 1, 2, phν (x) =

|Z|∑
l=1

dlθl(x).

The coefficients cik, i = 1, 2, and dl are found by solving the SLAE, obtained by the

Galerkin method from (5) (see below). Then we find the true values of the velocity and

pressure at the nodes of the SΩ and Z sets, respectively, using the relations

ui,k = ρ−ν
∗
(Pk)cik, i = 1, 2, pl = ρ−µ

∗
(Zl)dl.

We use the case µ∗ = ν∗ (see [14,15]).
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Fig. 1: WFEM for ν = 1.6 (left), ν = 0.6 (right).

Table 2: The WFEM ( δ = 0.01265 and ν = 0.6) and CFEM.

ν∗ 0.2 0.24 0.28 0.32 0.36 0.4 0.42 GS

(∆, h) = (10−6, 0.005) 0.15 0.30 0.23 0.21 0.20 0.17 0.15 0.11

(∆, h) = (5 · 10−7, 0.005) 0.10 0.19 0.16 0.15 0.14 0.11 0.10 0.07

(∆, h) = (10−6, 0.0025) 0.42 0.91 0.44 0.29 0.23 0.19 0.18 0.17

(∆, h) = (5 · 10−7, 0.0025) 0.28 0.80 0.29 0.19 0.17 0.13 0.12 0.11

Definition 2. The pair (uhν , p
h
ν ) ∈ Wh × Qh is called an approximate Rν-generalized

solution of the problem (2), uhν satisfies a condition (2) at the nodes SΓ, if

an(uhν ,v
h) + b1(vh, phν ) = l(vh), b2(uhν , s

h) = 0 (5)

hold, ∀(vh, sh) ∈Wh
0 ×Qh and f ∈ L2,ζ(Ω, δ),g ∈W

1/2
2,ζ (Γ, δ), ν ≥ ζ ≥ 0.

3 Results of numerical experiments

Let us carry out numerical simulation of the nonlinear problem (1). The method for

finding solution of (5) is based on the incomplete Uzawa algorithm [16]. Let Ω :=

(−1, 1) × (−1, 1) \ [0, 1] × [−1, 0]. and define the triangulation Th. Straight lines x
(i)
1 =

−1 + ih, x
(j)
2 = −1 + jh, i, j = 0, . . . , N for a given N : N · h = 2, when intersect-

ing with the domain Ω̄ split it into elementary squares. Each square with a diagonal

(we connect its lower left vertex with the upper right vertex) divide into two triangles.

Each of the resulting triangles, using the centroid, is divided into three triangles. The

solution (w, q) of (1) has the form: w1(r, ϕ) = rλΥ1(ϕ), w2(r, ϕ) = rλΥ2(ϕ), q(r, ϕ) =

rλ−1Υ3(ϕ). We have Υ1(ϕ) = (1+λ)G(ϕ) sinϕ+G′ϕ(ϕ) cosϕ,Υ2(ϕ) = G′ϕ(ϕ) sinϕ−(1+

λ)G(ϕ) sinϕ,Υ3(ϕ) = (1+λ)2

λ−1 G′ϕ(ϕ)− 1
1−λG

′′′
ϕϕϕ(ϕ), where the auxiliary function is repre-

sented as G(ϕ) :=
sin((1+λ)ϕ) cos( 3πλ

2 )

1+λ +
sin((λ−1)ϕ) cos( 3πλ

2 )

1−λ + cos((1−λ)ϕ)− cos((1−λ)ϕ).

We use grids with a step h equal to 0.01, 0.005, 0.0025 and α = 0.01, ν̄ = 1, λ = 0.545.

Let’s present comparative analysis of the CFEM, i.e. ν = ν∗ = µ∗ = 0 and proposed

WFEM, which has three parameters: δ, ν and ν∗(µ∗ = ν∗) in the norm of C(Ω̄). We

have determined the range of choice of the optimal parameter ν∗ for δ = 0.01265 and
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Fig. 2: Optimal parameter ν∗ of WFEM, ν ∈ [0.6, 1.6] in the norm of C(Ω̄).

ν ∈ [0, 6; 1.6]. In Tables 1-2, we have determined the proportion of nodes where the error

doesn’t exceed ∆, which are 5·10−7 and 10−6. Figures 1-2 show graphs of the distribution

of nodes, depending on ν∗, where SGenN (∆) – proportion of CFEM nodes not exceeding

∆ and SRνN (ν∗, ν,∆) – proportion of WFEM nodes not exceeding ∆ for δ = 0.01265.

The proposed WFEM gives a significant advantage over the CFEM (see Figures 1-2,

Tables 1-2). The error in the norm of the space C(Ω̄) is suppressed in the vicinity of the

singularity point and does not allow it to propagate into the interior part of domain.
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АННОТАЦИЯ

Определено понятие Rν-обобщённого решения для одной задачи гид-
родинамики с входящим углом на границе многоугольной области. По-
строен приближённый метод решения задачи. Проведён численный ана-
лиз и экспериментально изучен вопрос влияния показателя весовой функ-
ции весового метода конечных элементов на погрешность решения в
окрестности входящего угла в норме пространства C(Ω̄). Выполнен срав-
нительный анализ и показано преимущество весового метода над клас-
сическими подходами.

Ключевые слова: уравнения Навье –Стокса, ВМКЭ, угловая сингуляр-
ность.
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