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Influence of weighted function exponent
in WFEM on error of solution for
hydrodynamic problems with singularity

The concept of an R,-generalized solution for a hydrodynamic problem with reen-
trant corner on the boundary of a polygonal domain is defined. An approximate
method for solving the problem is constructed. A numerical analysis is carried out
and the question of the influence of the weighted function exponent in the weighted
finite element method on the error of the solution in the vicinity of the reentrant
corner in the norm of the space C(Q) is experimentally studied. A comparative
analysis has been carried out and the advantage of the weighted method over the
classical approach has been shown.
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Introduction

At present, mathematicians and engineers are of particular interest in solving problems
describing natural physical processes in polygonal non-convex domains 2 with a corner
w on the boundary greater than 7. There is a task class for which a generalized solution
exists and belongs to the space W} (), but it does not belong to the Sobolev space
W3(€2). According to the principle of agree estimates there is no classical finite difference
method (CFDM) or finite element method (CFEM), whose solution would converge to the
exact one at the rate of O(h)(where h is the grid step). In reality, the order of convergence
with respect to h is substantially less than unity and decreases with increasing w. As for
the hydrodynamic problems, we single out the following approaches to research based
on: 1) the separation of singular and regular components of the solution, approximation
of the coefficients of the 1st and, based on this, finding the 2nd [1]; 2) mesh thickening in
the vicinity of w [2]. Known methods allow obtain the required 1st order of convergence,
but in the O(1)-vicinity of w modifications to the CFEM are required.
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This paper proposes a fundamentally different idea. The solution is defined as R,-
generalized in weight sets. The approach is based on the introduction of the weight
function into the integral identities, equal to the distance from the point to the singularity
point in the J-neighbourhood of the reentrant corner, and the constants § outside it.
Thanks to this, the influence of the corner singularity can be suppressed. This idea was
first proposed for solving elliptic problems (see [3]). For the Stokes problem in [4] a
weight analogue of the LBB condition is established. The existence and uniqueness of
an R,-generalized solution in weighted sets [5] is proved. Numerical methods proposed
for the elliptic problems [6-8] with different values of corners w. The paper considers the
stationary problem flow of a homogeneous incompressible viscous fluid, obtained as a
result of discretization in time of the Navier—Stokes equations describing it in convective
form. For the numerical implementation of the problem, based on the R, -generalized
solution, a weighted FEM (WFEM) is constructed. A series of computational experiments
was carried out for an angle greater than 7, as with the help of the classical FEM, and
the proposed WFEM. Comparative analysis is carried out in the norm of the space C(Q)

1 Problem statement and definition of R, -generalized solution

Let Q = {x: x = (z1,72)} C R? be a polygonal domain with boundary I',Q = QUT.
Consider a nonlinear problem: find the velocity w = (w1, w2) and the pressure ¢, that is,
the solution of the system and boundary condition

aw—V.-@Vw)+(w-V)w+Vg=f, V-w=0 in Q w=g on I, (1)

where «, 7 known positive constant, f and g known forces on 2 and I' respectively.
Problem (1) is nonlinear due to the presence of the term (w-V)w. The most appropriate
way to linearized it is Picard’s iterative procedure [9]: at the n-th iteration, we solve
the problem with the linear term (w”~!.V)w" | where w"~! computed in the previous
iteration. If the norm of the f is bounded and 7 is not so small, then there exists a
solution (1) (w,q) and w™ — w,q" — ¢ for n — oo for any initial approximation w°
satisfying (1). Thus, it is necessary to solve the following problem: find u = (uy, us) and
p, satisfying the system of equations and the boundary condition:

ou—V-(rVu)+(d"-V)u+Vp=£f, V.-u=0 in Q, u=g on T, (2)

where d” € Lo (f2) is an approximate of the velocity from previous iteration, V-d" = 0.

A feature of the consideration of problem (1) is that the domain Q is a non-convex
polygon with one corner w with vertex at the origin (0,0) the value of which on the
boundary is greater than 7. Thus, in accordance with the principle of consistent estimates,
any FEM cannot give a better result in order of accuracy of the solution (see [10]) than

V(= up) Lo + 27 lu— L@, = ORF).

For example, if w takes a value 37”, then 8 ~ 0.54. In a convex domain S equals to 1. Now
we define an R, -generalized solution to the problem (2). The idea of an R, -generalized
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solution is based on the introduction of the weight function p(x) into the integral identity
to some positive power v, and

p(x) = {||Ix]|, if x € Qs;6, if x € N\ s},
where Q5 = {x € Q: ||x]| < § < 1}. Now, we introduce the necessary sets of generalized
functions (see [11-13]). Denote by Wy, (€2,4) the set of functions z(x), satisfying the
conditions:

0<(C < ||Z||L2777(Q\g25)7 |Dkz(x)| < Cgé"‘TpT_"_k(x),x € Qs, (3)

and having a limited norm

1zllwy ) = Z 71 D217,
[1|<1

of W21’n (), where C5 is a positive constant and 7 is a small positive parameter indepen-
dent from 7,0 and 2(x),k =0, 1. Let ng,’,(])(ﬂ, §) C W5 ,,(§2,6) be such that

Wi}?(Q, §) ={2€C>®(Q):2=0o0nT, satisfies conditions (3)}
with bounded norm of Wy , ().
W;’f(F, 0) ={s: if exists z € Wzlm(ﬂ, 0), that z =s on I'}

with a

||5||w21,{f(r,5) = zzsi%fn r HZHWZ{n(Qy

Via Ly, (€2, 6) denote the set of functions z(x) satisfying (3) if & = 0, with bounded norm
2/l L., ) = "2l Ly(a) of the space Ly, (Q). LY, (2,0) is a subset of Ly, (€2, ) such
that z € LY, (€2,0) if and only if z € Ly, (Q,6) and |[p"z||1, (@) = 0. We will highlight
the spaces of vector functions in bold type.

Definition 1. The pair (u,, p,) € W3 ,(€,0) x L§ ,(Q,6) is called an R,-generalized
solution of (2), u, satisfies a condition (2) almost everywhere on T, if

an(“ua") - bl(V,p,,) = Z(V>7 bQ(um 5) =0 (4)
hold, ¥(v, s) € Wi (€,8) x LY, (2,6), f € Ly¢(2,6),g € Wéf(r, 8, v>¢>0:
an(u,,v) = / [au,, ~(p*V) + oVu, : V(p*v) + (d" - V)u, - (pQVV)}dx,
Q

I(v)= [ f-(p*Vv)dx,bi(v,p,) = / P V- (p*v)dx, ba(u,, s) = / (p* 5)V - u, dx.
Q Q Q



228 A.V. Rukavishnikov

Table 1: WFEM ( § = 0.01265 and v = 1.6) and CFEM (GS).
v* 024 026 028 03 032 034 036 GS
(A,h) = (1075,0.005) 0.14 0.18 0.30 025 019 0.5 0.12 0.11
(A,R) = (5-1077,0.005) 0.09 0.12 021 020 013 0.10 0.08 0.07
(A, h) = (1075,0.0025) 0.30 0.44 086 047 031 024 020 0.17
(A,R) = (5-1077,0.0025) 0.19 0.29 0.73 032 020 0.16 0.13 0.11

2 Construction of an approximate method for the problem

Let us construct a WFEM to find an approximate solution of (2), relying on the notion
of an R, -generalized solution (4). For this purpose, we triangulate T}, of Q2. To do this, we
divide 2 by triangles with sides of order h. We represent each of them as three triangles
K;, with vertices in the center masses of the main triangle. Each of K;; will be called

a FE, and Q, = |J K. Further, we will find sets of nodes for the velocity and
Ki; €Ty,

pressure. For the velocity, the set of FE vertices R; and the midpoints of their sides Qy,
lying inside €2 will be denoted by Sq, and on the boundary by St, S = Sq U Sr. The
common vertex (or the middle of the side) of two adjacent FEs is considered to be one
node. For the pressure, let’s denote by Z the set of nodes Z, coinciding with the nodes R;
corresponding K;. Z, and Z; coinciding with the node R;, the vertices of two neighboring
elements are considered different nodes. For the velocity, to each node Py of S we assign a
basis function ¢ (x) : ¢r(Pr) = 1 and ¢ (P;) = 0,] # k, ¢r(x) is a quadratic function on
yours support. We define the space X" as a linear span, spanned by a system of {gpk}f:ll
For the velocity field, we will use the space X* = X" x X". For the pressure, each node Z;
of Z is associated with a basis function ¢;(x) : ¥1(Z;) = 1 and ¢;(Z;) = 0,7 # I, ¥y (x) is
a linear function on one finite element. We define the space Y" as a linear span, spanned
by the system of basis functions {djl}gll Let us improve the pair of spaces X" — Y
as follows: 1) each ¢ (x) of the space X" multiply by p="" (x): xx(x) := p~" (X)pr(x),
and multiply each v;(x) of the space Y" by p=*" (x) : 6;(x) := p~* (x)t(x); 2) their
linear spans form FE spaces W’ and Q", respectively. For the velocity field, we have
W = Wh x Wh. Also Wh = {vh € Wh . v"(P,) = 0, in all P, € Sr}. Velocity field

h h

u) = (ul,,ul,) and pressure p}! have the form:

IS |Z]

= Z C?‘CX]C(X),Z. =12, P}VL(X) = Zdlel(x)
k=1 =1

The coefficients ¢,i = 1,2, and d; are found by solving the SLAE, obtained by the
Galerkin method from (5) (see below). Then we find the true values of the velocity and
pressure at the nodes of the Sq and Z sets, respectively, using the relations

uig=p " (P, i=1,2, p=p " (Z)d.

We use the case p* = v* (see [14,15]).



Influence of weighted function exponent in WFEM ... 229

Ry (s 6 R p

= Sgop(V16,107) — 8Ry(v,06,10°)

Ru(orq @ 108 e

2 Shv(v16,107) o SR (v,06,10%)
_____ g%en(159) e g8 (400

800

Gen, -6
8400 (107)

800

Gen, , -6
8400 (10 )

022 024 026 028 03 032 034 036 * 016 018 02 022 024 026 028 03 032 034 036 038 04 042 v*

Fig. 1: WFEM for v = 1.6 (left), v = 0.6 (right).

Table 2: The WFEM ( § = 0.01265 and v = 0.6) and CFEM.
v~ 02 024 028 032 036 04 042 GS
(A h) = (1075,0.005) 0.15 0.30 023 021 020 0.17 015 0.11
(A,h) = (5-1077,0.005) 0.10 0.19 0.16 0.15 0.4 0.11 0.10 0.07
(A,h) = (1075,0.0025) 042 091 044 029 023 0.19 018 0.17
(A,R) = (5-1077,0.0025) 0.28 0.80 0.29 0.19 0.17 0.13 012 0.11

NSNS NN

Definition 2. The pair (ufj, pﬁ) € W' x Q" is called an approximate R, -generalized
solution of the problem (2), u’ satisfies a condition (2) at the nodes Sr, if

an(uﬁvvh) + bl(vhap’ul) = l(vh)a bQ(uz}/L7 sh) =0 (5)

hold, V(v", ") € W} x Q" and f € Ly ¢(2,6),8 € W,/2(I',), v > ¢ > 0.

3 Results of numerical experiments

Let us carry out numerical simulation of the nonlinear problem (1). The method for
finding solution of (5) is based on the incomplete Uzawa algorithm [16]. Let  :=
(—=1,1) x (=1,1) \ [0,1] x [-1,0]. and define the triangulation T}, Straight lines asgi) =
-1+ ih,xéj) = —1+ jh,i,j = 0,...,N for a given N : N -h = 2, when intersect-
ing with the domain  split it into elementary squares. Each square with a diagonal
(we connect its lower left vertex with the upper right vertex) divide into two triangles.
Each of the resulting triangles, using the centroid, is divided into three triangles. The
solution (w,q) of (1) has the form: wy(r, ) = r*Y1(p), wa(r, @) = 1 Ta(p),q(r, ) =
r1T5(p). We have T1(p) = (1+A)G(p) sin o+ G, () cos @, To(p) = G, () sinp— (14
ANG(p)sinp, Ts(p) = (1;%1)2(?’@(90) —L.G" (), where the auxiliary function is repre-

T—X T ope
sin((14+X)¢) cos(3Z2) sin((A—1)¢) cos(222)

sented as G(p) 1= T + Y +cos((1—=N)p) —cos((1—N)p).
We use grids with a step h equal to 0.01,0.005,0.0025 and o« = 0.01, 7 = 1, A = 0.545.
Let’s present comparative analysis of the CFEM, i.e. v = v* = p* = 0 and proposed

WFEM, which has three parameters: J,v and v*(u* = v*) in the norm of C(Q2). We
have determined the range of choice of the optimal parameter v* for § = 0.01265 and
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Fig. 2: Optimal parameter v* of WFEM, v € [0.6,1.6] in the norm of C(9).

v € [0,6;1.6]. In Tables 1-2, we have determined the proportion of nodes where the error
doesn’t exceed A, which are 5-10~7 and 10~°. Figures 1-2 show graphs of the distribution
of nodes, depending on v*, where Sﬁen (A) - proportion of CFEM nodes not exceeding
A and Sf,"(l/*, v, A) — proportion of WFEM nodes not exceeding A for § = 0.01265.

The proposed WFEM gives a significant advantage over the CFEM (see Figures 1-2,

Tables 1-2). The error in the norm of the space C(€2) is suppressed in the vicinity of the
singularity point and does not allow it to propagate into the interior part of domain.
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AHHOTAIINS

Omnpeneneno moustre R,-0000IEHHOrO PEIIeHNS JIJIsT OJHOM 3a,1a91 TH]I-
POIMHAMUKY € BXOJSIIUM yTJIOM Ha IPAHUIE MHOTOYTro/IbHON obsactu. 11o-
CTPOEH IPUOIMKEHHBIN METOZ, peIIeHus 3a0a49u. I[pOBeIEH YNCIeHHbIi ana-
JIN3 ¥ 9KCIIEPUMEHTAIBLHO U3y YeH BOIIPOC BIUSHES IIOKA3aTE Il BECOBOI DyHK-
LUK BECOBOI'O METOA KOHEUYHBIX 39JIEMEHTOB Ha IIOIPEIIHOCTH PElleHUs B
OKPECTHOCTH BXOJIATIETo yTiTa B HopMe poctpanctsa C(()). Bemomen cpas-
HUTEJIbHDIA aHAJIN3 U IIOKA3aHO [IPEMMYIIECTBO BECOBOIO METOIA HaJl KJIac-
CHYECKUMU TIOIXOTAMMU.

Kutouessie ciioBa: ypashenus Hasve — Cmokca, BMK3, yenosasn cuneyaap-
HOCTND.
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