
Far Eastern Mathematical Journal. 2022. V. 22. No 2. P. 207–212

UDC 519.633:51-76

MSC2020 35K57 + 26A33 + 92D25

c© L. I. Moroz1

Time-fractional numerical modelling

applied to diffusion-wave processes

of bacterial biomass growth

A time-fractional model of diffusion-wave processes is considered to describe the
bacterial growth phenomenon. The 2D model is specified as an initial boundary
value problem for a system of semilinear time-fractional partial differential equa-
tions. A computational scheme is based on a combination of a splitting finite differ-
ence method and an iterative procedure. Simulations are performed with the use of
Matlab programming. Computational experiments allow one to examine the inter-
actions of nutrient availability and biomass production under variation of dynamical
modes of the biological system.
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Introduction

Modelling of many reactive-diffusive phenomena, representing spatial and temporal chan-
ges in concentrations of substances or accompanying transfer processes often do not agree
with real observations for a number of amorphous structures, porous media, liquid crys-
tals, biopolymers, proteins, biosystems, ecosystems, etc. Such processes can be accom-
panied by significant gradient changes in analyzed characteristics or a very long waiting
time for aftereffects. One of the promising approaches to derive models of nonstandard
diffusion and transport phenomena in heterogeneous, complex-structured, and hereditary
systems is based on the apparatus of fractional calculus [1].

Mostly, biological objects exhibit heterogeneity and self-similarity of structures, for-
mation of fractal patterns, irregularity and scalability properties, nonlinear, stochas-
tic, and time-delay dynamics [2–6]. For example, time-fractional differential equations
allow one to describe time memory effects which are common for different bacterial
species [5, 7–9]. In addition, bacterial biofilms as complex self-similar structures can be
under consideration. Biofilms are aggregations of microorganisms growing at interfaces
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embedded in a polymer matrix. The formation of such structures plays a vital role in
medicine, because biofilms involved in bacterial infections can become resistant to an-
tibiotics [10,11].

A well-known deterministic approach has been successfully applied to explore bac-
terial population dynamics [13]. Specifically, a model of growth of microorganisms for-
malized by a system of ordinary differential equations has been proposed by J. Monod,
considering the saturation of the growth rate of a culture on a nutrient substrate. Fur-
ther, M. Droop has described the dependence of biomass on the cell quota growth of
microalgae cultivated in a photobioreactor based on the logistic model. Later, various
modifications of the model of bacterial biomass growth have been developed. Nowadays,
models also consider the spatial heterogeneity of biofilms and can be formalized with
partial differential equations (PDEs). Moreover, for modeling biofilms growth, a hybrid
approach has been proposed that combines a stochastic – cellular automaton model and
a deterministic model to estimate nutrient concentration [2].

For instance, the model proposed in [10, 12] can be considered as a modification of
the Monod model, taking into account space-time distributions of the biomass as well
as the nutrient concentration. For this study, due to bacterial dynamics exhibiting self-
similar character and time memory effects, it was of interest to investigate the capability
of a time-fractional modification of the reaction-diffusion model to explore the complex
dynamics of bacterial biomass. It should be mentioned that a fractional approach has
also been previously applied to modify the chemostatic model to describe time memory
effects in bacterial populations [7]. The overall goal of the present study is to develop the
2D time-fractional reaction-diffusion model of bacterial biomass growth with a focus on
the application of numerical methods.

1 The mathematical model

As above, the considered model describing the dynamics of nutrient concentration and
bacterial biomass density is governed by an initial-boundary value problem for a sys-
tem of semilinear PDEs [10, 12]. In the framework of this study, we suggest modifying
this model by means of the introduction of the time-fractional differential operators to
mathematically generalize the complex dynamics of the bacterial biomass as well as the
nutrient concentration:

∂αc

t∗∂tα
= Dc∆c− k1

cm

k2 + c
, (1)

∂βm

t∗∂tβ
= Dm(m)∆m+ k3

k1cm

k2 + c
− k3k4m, (2)

c
∣∣
t=t0/t∗

= c0, m
∣∣
t=t0/t∗

= m0, 0 < x < Lx, 0 < y < Ly, (3)

c
∣∣
x=Lx

= C,
∂c

∂n

∣∣∣∣
∂Ω\{x=Lx}

= 0,
∂m

∂n

∣∣∣∣
∂Ω

= 0, t0/t
∗ ≤ t ≤ T/t∗, (4)

where 0 < α, β ≤ 2 are the orders of time-fractional derivatives in the Riemann –
Liouville sense, c(x, y, t) is the nutrient concentration in g/m3; m(x, y, t) is the biomass
density in g/m3 ; Dc, Dm, k1, k2, k3, k4, c0, m0, C are the model parameters; Lx, Ly
define the size of a solution domain in m; ∂Ω is the boundary of the solution domain;
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θ = t · t∗ is the time in days; t∗ is the characteristic time in days; t0 and T are the initial
and the observation time in days.

The solvability of considered types of problems is rather well studied in the classical
case. Notably, existence and uniqueness of solution for nonlocal nonlinear evolution equa-
tions arising in population dynamics has been supported by [14]. In [15], the Monod model
for biochemically reacting contaminant transport in the subsurface regarding higher or-
der regularity of solutions has been analyzed. Basically, a specific model (1)–(4) requires
further additional theoretical study. As far as the construction of analytical solutions for
fractional PDEs results in serious difficulties, using numerical methods is justified. In
particular, to solve 2D problem, here we apply a finite difference splitting method.

2 Computational scheme

The computational scheme for implementing the 2D anomalous diffusion model is based
on the Grunwald – Letnikov formula and a finite difference splitting method (namely,
the Yanenko scheme). Let us introduce a rectangular space-time mesh for two space
coordinates Ωτh1,h2

= {xi = (i − 1)h1, i = 1, N + 1, yj = (j − 1)h2, j = 1,M + 1, tk =

(k− 1)τ, k = 1,K + 1}. Further, we can apply a two-layer scheme for equations (1)–(2).
For the first equation for k + 1/2 layer, we have
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. It is known that the Grun-

wald – Letnikov formula can be correctly applied only for problems with homogeneous
initial conditions. In our case we should take into account a correction term ψ added to
the scheme (5). Since we have a nonlinear function F ki,j depending on the functions cki,j
and mk
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We can construct the computational scheme for the equation (2) in similar way. For
k + 1/2 time-layer, we have
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Table 1: Model parameters for problem (1)–(4)

Name Parameter Numerical value Unit

µ Parameter for the biomass concentration 10000 g/m3

c0 Initial value of nutrient medium concentration 1 g/m3

Dc Diffusion coefficient for the substrate 8 · 10−5 m2/day
D∗m Diffusion parameter for bacterial cells 10−12 m2/day
k1 Power consumption rate 9.52 1/day
k2 Monod saturation constant 4 g/m3

k1k3 Maximum specific growth rate 6 1/day
k3k4 Bacteria outflow rate 0.4 1/day
Lx = Ly Linear size of the domain 0.1 mm

Hence, for k + 1 time-layer, we obtain
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Diffusion coefficient for bacterial biomass is defined as (Dm)ki,j = Dm(mk
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assume that only one bacterial colony is located in the center of the computational do-
main at the initial moment m1
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)
for r ≤ r̃ and m1

i,j = 0 otherwise,

where r2 = (xi − 0.5Lx)
2

+ (yj − 0.5Ly)
2
; σ, κ, and r̃ are the parameters empirically

estimated. In the same way, an iterative procedure is introduced into the computational
algorithm for each time layer. Noted also that the Yanenko scheme is characterized by
O(h2

1 + h2
2 + τ) order of accuracy. We also applied nonsymmetric approximations of the

second order of accuracy for the Neumann boundary conditions.

3 Numerical experiments

To perform numerical experiments we initialize a set of model parameters listed in Ta-
ble 1 previously specified for the “intege” model [12]. Figure 1 shows the time-dependent
distributions of the nutrient concentration and biomass density at the central point of
the computational domain under varying dynamical regimes. We set the boundary value
of the nutrient concentration C = 1 g/m

3
, the observation time equals 10 days. The

empirical parameters are set to be σ = 10−11m2, κ = 0.05µ g/m
3
, and r̃ = 0.05Lx m.

In terms of the anomalous diffusion process, we can explore the implementation of
three different dynamical regimes of the biosystem: the subdiffusion at α = 0.85, the clas-
sical diffusion at α = 1, and the superdiffusion at α = 1.25. Computational experiments
indicate direct dependence of the velocity of bacteria growth as well of the bacterial nutri-
ent consumption on the order of the time-fractional derivative. When the superdiffusion
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Fig. 1: The temporal profiles of the nutrient concentration — a and biomass density —

b calculated at the central position for different values of orders of fractional derivatives.

regime is realized, the observed processes occur with greater intensity and the absolute
values of the key characteristics reach values deviating by 20 − 30% compared to the
classical case. On the contrary, the implementation of the subdiffusion regime leads to a
slowdown in the dynamics of both growth and nutrient consumption.

Conclusion

In summary, in order to describe the complex growth dynamics of the bacterial biomass, a
time-fractional modification of the 2D model was considered. An implicit computational
scheme was constructed based on the Grunwald – Letnikov formula and an iterative pro-
cedure. The computational algorithm was implemented using Matlab programming. The
considered approach enables one to generalize and significantly expand the class of de-
terministic models used to model a bacterial population due to the possibility of varying
dynamic regimes.
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АННОТАЦИЯ

Рассматривается дробно-дифференциальная модель диффузионно-вол-
новых процессов в приложении к описанию явления бактериального ро-
ста. Двумерная модель формализуется в виде начально-краевой задачи
для системы полулинейных дифференциальных уравнений в частных
производных с дробной производной по времени. Вычислительная схе-
ма основана на комбинации метода расщепления и итерационной про-
цедуры. Компьютерное моделирование проведено в Matlab. Вычисли-
тельные эксперименты позволяют исследовать взаимодействие концен-
трации питательных веществ и роста биомассы при варьировании ди-
намических режимов функционирования биосистемы.

Ключевые слова: диффузионно-волновое уравнение, производная дроб-
ного порядка, конечно-разностная схема расщепления, модель роста
бактериальной биомассы.
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