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Inverse problem of recovering the electron

diffusion coefficient

The inverse problem of recovering the electron diffusion coefficient is considered.
Within the framework of the optimization approach, this problem is reduced to the
multiplicative control one. The solvability of the considered extremum problem is
proven.
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Introduction. Statement of boundary value problem

In recent years, there has been an interest in the study of the diffusion-drift approach

for modeling the charging process of polar dielectrics induced by electron irradiation. On

the practical side, this area is of interest due to the need to predict the state of dielectric

materials under their diagnosis by scanning electron microscopy methods.

A mathematical model of the charging process of polar dielectrics with sufficiently

long electron irradiation can be represented by the following boundary value problem

considered in a bounded domain Ω ⊂ R3 with a boundary Γ:

−div (d∇ρ) + µnE · ∇ρ+ (µn/εε0)|ρ|ρ = f in Ω, (1)

curlE = 0, divE = (1/εε0)ρ in Ω, (2)

ρ = 0, E× n = 0 on Γ. (3)

Here ρ is the volume charge density, E is the electric field intensity vector, d(x) is the

diffusion coefficient of electrons, µn is the drift mobility of electrons, ε is the dielectric

permittivity, ε0 is the dielectric constant, f is the generating term responsible for the

action of a volume charge source in an object. Below we will refer to the problem (1)–(3)

as Problem 1.
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A wide range of modern works is devoted to the development of mathematical models

and the creation of software for the study of electronically stimulated charging processes

(see, for example, [1–6]). In turn, the mathematical correctness of one of these models was

established recently in the article [7], where the global solvability of Problem 1 and local

uniqueness of its solution are proved. For the charge density ρ, the maximum principle

was established. Also, the maximum principle was applied to the control of computational

experiments.

In this paper, the multiplicative control problem for Problem 1 is formulated and

its solvability is proved. The control role is played by the function d. Note that, within

the framework of the optimization approach, the problem of recovering the coefficient d,

based on additional information about the solution of Problem 1, can be reduced to the

control problem under consideration (see [8–10]).

1 Solvability of the boundary value problem

When analyzing the boundary value problem, we will use Sobolev functional spaces

Hs(D), s ∈ R. Here, D denotes domain Ω, or some subdomain Q ⊂ Ω, or boundary Γ.

By ‖ · ‖s,Q, | · |s,Q, and (·, ·)s,Q, we denote the norm, semi-norm, and scalar product in

Hs(Q). Norms and scalar products in L2(Q) and L2(Ω) we denote respectively by ‖ · ‖Q
and (·, ·)Q, ‖ · ‖Ω and (·, ·)Ω.

We introduce the following function spaces H1(∆,Ω) = {h ∈ H1(Ω) : ∆h ∈ L2(Ω)},
H1

N (Ω) = {h ∈ H1(Ω)3 : h× n|Γ = 0}, H̃1
N (Ω) = H1

N (Ω) ∩ ker (curl), the function set

Hs
d0

(Ω) = {d ∈ Hs(Ω) : d ≥ d0 > 0}, s > 3/2, and the space X = H1
0 (Ω)× H̃1

N (Ω).

Let the following conditions hold:

(i) Ω is a bounded simply connected domain in R3 with connected boundary Γ ∈ C0,1;

(ii) f ∈ L2(Ω), d ∈ Hs
d0

(Ω).

Let us also remind that by the Sobolev embedding theorem, the space H1(Ω) is

embedded into space Ls(Ω) continuously for s ≤ 6, compactly for s < 6, and the following

estimate holds:
‖h‖Ls(Ω) ≤ Cs‖h‖1,Ω ∀h ∈ H1(Ω), (4)

where the constant Cs depends only on s and Ω.

The following lemmas hold (see [11]).

Lemma 1. Under the conditions (i) and E ∈ H1(Ω)3, there exist positive constants C0,

δ1, γ
′
1, and γ1, which depend on Ω such that

|(∇h,∇η)Ω| ≤ C0‖h‖1,Ω‖η‖1,Ω,
|(E · ∇h, η)| ≤ γ′1‖E‖L4(Ω)3‖h‖1,Ω‖η‖1,Ω ≤ γ1‖E‖1,Ω‖h‖1,Ω‖η‖1,Ω ∀h, η ∈ H1(Ω), (5)

(∇s,∇s) ≥ δ1‖s‖21,Ω ∀s ∈ H1
0 (Ω). (6)

If the functions E ∈ H1(Ω)3 and ρ ∈ H1
0 (Ω) are related by the second relation in (2),

then the following relation (E · ∇ρ, h) = −(∇h ·E, ρ)− (1/εε0)(h, ρ2) takes place for all

h ∈ H1
0 (Ω). If h = ρ, it takes the following form: µn(E · ∇ρ, ρ) = −(µn/2εε0)(ρ, ρ2).
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Lemma 2. Under the condition (i) for any function σ ∈ L2(Ω), there is a unique solution

E ∈ H̃1
N (Ω) of the problem: curlE = 0, divE = σ in Ω, E× n = 0 on Γ and the following

estimate holds: ‖E‖1,Ω≤CN‖σ‖Ω, where CN is a positive constant which depends only

on Ω.

Let (ρ,E) ∈ (C2(Ω)∩C0(Ω))×(C1(Ω)3∩H̃1
N (Ω)) is the classical solution of Problem 1.

Let us multiply the equation in (1) by a function h∈H1
0 (Ω) and integrate over Ω using

the Green’s formula. As a result, we obtain the weak formulation of Problem 1:

(d∇ρ,∇h) + µn(E · ∇ρ, h) + (µn/εε0)(|ρ|ρ, h) = (f, h) ∀h ∈ H1
0 (Ω), (7)

divE = (1/εε0)ρ in Ω. (8)

Theorem 1. Assume that the assumptions (i), (ii) hold. Then there exists a weak solu-

tion (ρ,E) ∈ X of Problem 1 and the following estimates are valid:

‖ρ‖1,Ω ≤ C∗‖f‖Ω, ‖E‖1,Ω ≤ (1/εε0)C2CNC∗‖f‖Ω, C∗ = (d0δ1)−1.

Besides, if the condition (µnC2C4/εε0)(γ1CN + C4)‖f‖Ω < λ2
∗, where λ∗ = d0δ1, holds,

then the weak solution of Problem 1 is unique.

2 Statement and solvability of the control problem

In this section we will study a multiplicative control problem for the system (1)–(3), in

which the role of the control is played by coefficient d. We assume that the function d

can be changed in K which satisfies the following condition:

(j) K ⊂ Hs
d0

(Ω), s > 3/2, is a nonempty convex closed set.

Let us introduce the functional spaces X = H1
0 (Ω)× H̃1

N (Ω), Y = H−1(Ω)× H̃1
N (Ω)∗

and set x = (ρ,E) ∈ X. Further, we consider the operator F = (F1, F2) : X×K → Y by

formulae 〈F1(x, d), h〉 = (d∇ρ,∇h) + µn(E · ∇ρ, h) + (µn/εε0)(|ρ|ρ, h)− (f, h), F2(x) =

divE−(1/εε0)ρ and rewrite a weak form (7)–(8) of Problem 1 in the form of the operator

equation F (x, d) = 0.

Let I : X → R be a weakly lower semicontinuous functional. We consider the following

multiplicative control problem:

J(x, d) ≡ (µ0/2)I(x) + (µ1/2)‖d‖2s,Ω → inf, F (x, d) = 0, (x, d) ∈ X ×K. (9)

The set of possible pairs for the problem (9) is denoted by Zad = {(x, d) ∈ X ×K :

F (x, d) = 0, J(x, d) <∞}.
Let, in addition to (j), the following condition hold:

(jj) µ0 > 0, µ1 ≥ 0, and K is a bounded set in Hs(Ω), s > 3/2, or µi > 0, i = 0, 1,

and the functional I is bounded from below.

We use the following cost functionals:

I1(ρ) = ‖ρ− ρd‖2Q, I2(E) = ‖E−Ed‖2Q. (10)

Here, the function ρd ∈ L2(Q) denotes a desired volume charge density in a subdomain

Q ⊂ Ω. The function Ed has a similar sense as the electric field.
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Theorem 2. Assume that the assumptions (i), (ii) and (j), (jj) take place. Let I : X → R
be a weakly semicontinuous below functional and let Zad 6= ∅. Then there is at least one

solution (x, d) ∈ X ×K of the control problem (9).

P r o o f. Let (xm, dm) = (ρm,Em, dm) ∈ Zad is a minimizing sequence for which the

following is true: limm→∞ J(xm, dm) = inf(x,d)∈Zad
J(x, d) ≡ J∗.

From the condition (jj) and from the Theorem 1, it can be deduced that the following

estimates hold:

‖dm‖s,Ω ≤ c1, ‖ρm‖1,Ω ≤ c2, ‖Em‖1,Ω ≤ c3, (11)

where the constants c1, c2, c3 do not depend on m. From the estimate (11) and from the

condition (j), it follows that there exist weak limits d∗ ∈ K, ρ∗ ∈ H1
0 (Ω), and E∗ ∈ H̃1

N (Ω)

of some subsequences of sequences {dm}, {ρm}, and {Em}, respectively.

With this in mind, it can be considered that as m→∞, we have

ρm → ρ∗ weakly in H1(Ω) and strongly in Ls(Ω), s < 6,

Em → E∗ weakly in H1(Ω)3 and strongly in Lp(Ω)3, p < 6,

dm → d∗ weakly in Hs(Ω) and strongly in L∞(Ω), s > 3/2. (12)

It is clear that F2(x∗) = 0. Let us show that F1(x∗, d∗) = 0, that is

(d∗∇ρ∗,∇h) + µn(E∗ · ∇ρ∗, h) + (µn/εε0)(|ρ∗|ρ∗, h) = (f, h) ∀h ∈ H1
0 (Ω).

We remind that a pair (xm, dm) satisfies the relation

(dm∇ρm,∇h) + µn(Em · ∇ρm, h) + (µn/εε0)(|ρm|ρm, h) = (f, h) ∀h ∈ H1
0 (Ω). (13)

Let us pass in (13) to the limit as m→∞, starting with the term (dm∇ρm,∇h):

(dm∇ρm,∇h)− (d∗∇ρ∗,∇h) = ((dm − d∗)∇ρm,∇h) + (∇(ρm − ρ∗), d∗∇h). (14)

Since d∗∇h ∈ L2(Ω)3, according to (12), we obtain that

(∇(ρm − ρ∗), d∗∇h)→ 0 as m→∞ ∀h ∈ H1
0 (Ω).

Using Holder’s inequality and considering (12) and (11), we have

|((dm − d∗)∇ρm,∇h)| ≤ ‖dm − d∗‖L∞(Ω)‖∇ρm‖Ω‖∇h‖Ω → 0 as m→∞ ∀h ∈ H1
0 (Ω).

In that case (dm∇ρm,∇h)→ (d∗∇ρ∗,∇h) as m→∞ for all h ∈ H1
0 (Ω).

It is clear that

(Em · ∇ρm, h)− (E∗ · ∇ρ∗, h) = ((Em −E∗) · ∇ρm, h) + (E∗ · ∇(ρm − ρ∗), h).

By (12), using Lemma 1 and (11), for the first term we obtain that∣∣((Em−E∗)·∇ρm, h)
∣∣ ≤ γ′1‖Em−E∗‖L4(Ω)3‖ρm‖1,Ω‖h‖1,Ω → 0 as m→∞ ∀h ∈ H1

0 (Ω).
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Since E∗h ∈ L2(Ω)3, for the second term due to (12), we have

(E∗ · ∇(ρm − ρ∗), h) = (∇(ρm − ρ∗),E∗h)→ 0 as m→∞ ∀h ∈ H1
0 (Ω).

Thus, (Em · ∇ρm, h)→ (E∗ · ∇ρ∗, h) as m→∞ for all h ∈ H1
0 (Ω).

Further, we consider the inequality∣∣(|ρm|ρm − |ρ∗|ρ∗, h)∣∣ ≤ ∣∣(|ρm|(ρm − ρ∗), h)∣∣+
∣∣(|ρm| − |ρ∗|, ρ∗h)∣∣ .

It is clear, that (|ρm| − |ρ∗|, ρ∗h) → 0 as m → ∞. Using Holder’s inequality and taking

into account (11) and (12) as s = 4, for the first term we obtain that∣∣(|ρm|(ρm − ρ∗), h)∣∣ ≤ c2C4‖ρm − ρ∗‖L4(Ω)‖h‖L4(Ω) → 0 as m→∞ ∀h ∈ H1
0 (Ω).

Therefore (|ρm|ρm, h)→ (|ρ∗|ρ∗, h) as m→∞ for all h ∈ H1
0 (Ω).

Since the functional J is weakly semicontinuous below on X×Hs(Ω), we obtain from

(11) that J(x∗, d∗) = J∗.

2

Remark 1. It is clear, that all cost functionals from (10) satisfy the conditions of the

Theorem 2.
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АННОТАЦИЯ

Рассмотрена обратная задача для определения коэффициента диффу-
зии электронов по плотности заряда, измеренной в некотором фрагмен-
те заряженного сегнетоэлектрика. В рамках оптимизационного подхода
эта задача сводится к задаче мультипликативного управления. Доказа-
на разрешимость рассматриваемой экстремальной задачи.

Ключевые слова: дрейфово-диффузионная электронная модель, модель
заряда полярного диэлектрика, задача мультипликативного управле-
ния, задача обратных коэффициентов.
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