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Inverse problem of recovering the electron
diffusion coefficient

The inverse problem of recovering the electron diffusion coefficient is considered.
Within the framework of the optimization approach, this problem is reduced to the
multiplicative control one. The solvability of the considered extremum problem is
proven.
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Introduction. Statement of boundary value problem

In recent years, there has been an interest in the study of the diffusion-drift approach
for modeling the charging process of polar dielectrics induced by electron irradiation. On
the practical side, this area is of interest due to the need to predict the state of dielectric
materials under their diagnosis by scanning electron microscopy methods.

A mathematical model of the charging process of polar dielectrics with sufficiently
long electron irradiation can be represented by the following boundary value problem
considered in a bounded domain  C R3 with a boundary T':

—div (dVp) + pnE - Vp + (un/ec0)|plp = f in Q, (1)
curlE=0, divE = (1/egg)p in €, (2)
p=0, Exn=0o0nT. (3)

Here p is the volume charge density, E is the electric field intensity vector, d(x) is the
diffusion coefficient of electrons, p,, is the drift mobility of electrons, € is the dielectric
permittivity, € is the dielectric constant, f is the generating term responsible for the
action of a volume charge source in an object. Below we will refer to the problem (1)—(3)
as Problem 1.
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A wide range of modern works is devoted to the development of mathematical models
and the creation of software for the study of electronically stimulated charging processes
(see, for example, [1-6]). In turn, the mathematical correctness of one of these models was
established recently in the article [7], where the global solvability of Problem 1 and local
uniqueness of its solution are proved. For the charge density p, the maximum principle
was established. Also, the maximum principle was applied to the control of computational
experiments.

In this paper, the multiplicative control problem for Problem 1 is formulated and
its solvability is proved. The control role is played by the function d. Note that, within
the framework of the optimization approach, the problem of recovering the coefficient d,
based on additional information about the solution of Problem 1, can be reduced to the
control problem under consideration (see [8-10]).

1 Solvability of the boundary value problem

When analyzing the boundary value problem, we will use Sobolev functional spaces
H*(D), s € R. Here, D denotes domain {2, or some subdomain @ C 2, or boundary T'.
By || lls.0s | |s.0, and (-, +)s.@, we denote the norm, semi-norm, and scalar product in
H*(Q). Norms and scalar products in L?(Q) and L?(2) we denote respectively by || - |o
and (" ')Qv ” . HQ and (7)9

We introduce the following function spaces H'(A, Q) = {h € HY(Q) : Ah € L?*(Q)},
HL(Q) = {h € H(Q)? : hx n|p = 0}, HL(Q) = HL(Q) Nker (curl), the function set
H; (Q) ={d e H5(Q) :d > do > 0}, s > 3/2, and the space X = H{(Q) x H} ().

Let the following conditions hold:

(i) Q is a bounded simply connected domain in R? with connected boundary I' € C%1;

(i) f € L?(Q),d € Hj (Q).

Let us also remind that by the Sobolev embedding theorem, the space H'(f2) is
embedded into space L*(§2) continuously for s < 6, compactly for s < 6, and the following

estimate holds:
g

Lo < Csllhlio Vhe HY(Q), ()

where the constant Cy depends only on s and €.
The following lemmas hold (see [11]).

Lemma 1. Under the conditions (i) and E € H*(Q)3, there exist positive constants Cy,
81, vy, and ~y;, which depend on 2 such that

|(Vh, Vn)al < Collhll1,allnll1,0,
[(E - Vh,n)| < lElLs@ellblellnllie < nllElellklholnlie Yhne HY(Q), (5)
(Vs,Vs) > 51||s||%Q Vs € Hé(Q) (6)

If the functions E € HY(Q)3 and p € H}(Q) are related by the second relation in (2),
then the following relation (E - Vp,h) = —(Vh - E, p) — (1/e2¢)(h, p?) takes place for all
h € HY(Q). If h = p, it takes the following form: pi,,(E - Vp, p) = —(un/2¢20)(p, p*).
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Lemma 2. Under the condition (i) for any function o € L?(2), there is a unique solution
E e fl}v(Q) of the problem: curlE = 0, divE =0 in Q, E x n = 0 on I" and the following
estimate holds: ||E|j1,o<Cnl||c|lq, where Cy is a positive constant which depends only
on ).

Let (p, E) € (C2(Q2)NCO(Q)) x (C1(Q2)>NH} () is the classical solution of Problem 1.
Let us multiply the equation in (1) by a function h€ H}(Q2) and integrate over Q using
the Green’s formula. As a result, we obtain the weak formulation of Problem 1:

(dVp,Vh) + pn(E - Vp, h) + (un/220)(|plp, ) = (f,h) Vh € Hy(9), (7)
divE = (1/egg)p in . (8)

Theorem 1. Assume that the assumptions (i), (ii) hold. Then there exists a weak solu-
tion (p,E) € X of Problem 1 and the following estimates are valid:

10 < Cullflle, Ellia < (1/eg0)CaCnCillfllas  Cw = (dody) "

ol

Besides, if the condition (j1,C2Cy/eco)(11Cn + Co) | flla < A2, where A\, = dod1, holds,
then the weak solution of Problem 1 is unique.

2 Statement and solvability of the control problem

In this section we will study a multiplicative control problem for the system (1)—(3), in
which the role of the control is played by coefficient d. We assume that the function d
can be changed in K which satisfies the following condition:

(j) K € H3 (Q), s > 3/2, is a nonempty convex closed set.

Let us introduce the functional spaces X = HE(Q) x HL(Q), Y = H-1(Q) x H(Q)*
and set x = (p, E) € X. Further, we consider the operator F' = (F, F3) : X x K — Y by
formulae (F(x, d), h) = (A Vp, VA) + (B - Vo, ) + (tn /220 (plps B) — (f, 1), Fa(x) =
div E—(1/egg)p and rewrite a weak form (7)—(8) of Problem 1 in the form of the operator
equation F(x,d) = 0.

Let I : X — R be a weakly lower semicontinuous functional. We consider the following
multiplicative control problem:

J(x,d) = (po/2)I(x) + (M1/2)Hd||§79 —inf, F(x,d)=0, (x,d)eX xK. (9)

The set of possible pairs for the problem (9) is denoted by Z,q = {(x,d) € X x K :
F(x,d) =0, J(x,d) < oo}.

Let, in addition to (j), the following condition hold:

(3j) mo > 0, 1 > 0, and K is a bounded set in H*(2), s > 3/2, or u; > 0,1 =0,1,
and the functional I is bounded from below.

We use the following cost functionals:

Lip)=lp—rlG: L(E)=||E-E3, (10)

Here, the function p? € L?(Q) denotes a desired volume charge density in a subdomain
Q C Q. The function E¢ has a similar sense as the electric field.
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Theorem 2. Assume that the assumptions (i), (ii) and (j), (jj) take place. Let I : X — R
be a weakly semicontinuous below functional and let Z,q # 0. Then there is at least one
solution (x,d) € X x K of the control problem (9).

Proof. Let (Xpm,dm) = (pm,Em,dm) € Zsq is a minimizing sequence for which the
following is true: lim,, oo J(Xm, dm) = inf(x gyez,, J(x,d) = J*.

From the condition (jj) and from the Theorem 1, it can be deduced that the following
estimates hold:

ldmllso <c1, llomlie <c2 |Emlia <cs, (11)

where the constants ¢, ¢z, ¢ do not depend on m. From the estimate (11) and from the
condition (j), it follows that there exist weak limits d* € K, p* € H}(Q), and E* € HL ()
of some subsequences of sequences {d,,}, {pm}, and {E,,}, respectively.

With this in mind, it can be considered that as m — oo, we have

pm — p* weakly in H*(Q) and strongly in L*(Q), s < 6,
E,, — E* weakly in H'(Q)% and strongly in LP(Q)?, p <6,
dp, — d* weakly in H*(Q) and strongly in L*>°(Q), s> 3/2. (12)

It is clear that F»(x*) = 0. Let us show that Fj(x*,d*) = 0, that is
(d* Vp*,Vh) + i (B* - Vp*, h) + (pn/e20)(|p*|p*, h) = (f,h) Vh € Hy(Q).
We remind that a pair (x,,,d,,) satisfies the relation
(din Vs VR) + i (Bry - Vs h) + (kn/e€0)(|pmlpm, h) = (f,h) Yh € Hg(Q).  (13)
Let us pass in (13) to the limit as m — oo, starting with the term (d,,, Vo, Vh):
(dm NV pm, Vh) — (d*Vp*,Vh) = (dm — d*)Vpm, Vh) + (V(pm — p*),d*Vh).  (14)
Since d*Vh € L%(Q2)3, according to (12), we obtain that
(V(pm — p*),d*Vh) = 0 as m — oo Yh € Hy(Q).
Using Holder’s inequality and considering (12) and (11), we have
[((dm = d*)Vpim, V)| < [ldm — d*[| oo (@) [V ol Ve — 0 as m — oo Vh € Hg(Q).

In that case (d;y,Vpm, Vh) — (d*Vp*,Vh) as m — oo for all h € H} ().
It is clear that

(Ep - Vo, h) = (E* - Vp*, h) = (Em — E) - Vo, h) + (E* - V(pm — p7), h).
By (12), using Lemma 1 and (11), for the first term we obtain that

|(Ep—E*)-Vm, h)| < Y1 Em—E*|| sl omllnellhllie = 0 as m — oo Vh € H(R).
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Since E*h € L?(2)3, for the second term due to (12), we have
(E* -V (pm — p*),h) = (V(pm — p*), E*h) = 0 as m — co Vh € H}(Q).

Thus, (E., - Vom, h) = (E* - Vp*, h) as m — oo for all h € H ().
Further, we consider the inequality

| (|omlom = 107 10* B)| < [(Ipm|(pm = p*), B) | + [(lpm| = [0*], p*h) | -

It is clear, that (|pm| — [p*|, p*h) — 0 as m — oo. Using Holder’s inequality and taking
into account (11) and (12) as s = 4, for the first term we obtain that

|(lom|(pm = p*), B)| < c2Callpm — p*[|LaIPllLs@) = 0 as m — oo Vh € Hy(9).

Therefore (|pm|pm,h) — (|p*]|p*, h) as m — oo for all h € Hg ().
Since the functional J is weakly semicontinuous below on X x H*(Q2), we obtain from
(11) that J(x*,d*) = J*.
O

Remark 1. Tt is clear, that all cost functionals from (10) satisfy the conditions of the
Theorem 2.

References

[1] M. Kotera, K. Yamaguchi, H. Suga, “Dynamic Simulation of Electron-Beam-Induced
Charging up of Insulators”, Jpn. J. Appl. Phys., 38:12, (1999), 7176-7179.

[2] A.G. Maslovskaya, “Physical and mathematical modeling of the electron-beam-induced
charging of ferroelectrics during the process of domain structure switching”, Jour. of Surface
Investigation, 7 (4), (2013), 680-684.

[3] A.V. Pavelchuk, A.G. Maslovskaya, “Approach to numerical implementation of the drift-
diffusion model of field effects induced by a moving source”, Russ. Phys. J., 63, (2020),
105-112.

[4] B. Raftari, N.V. Budko, C. Vuik, “Self-consistence drift-diffusion-reaction model for the
electron beam interaction with dielectric samples”, J. Appl. Phys., 118, (2015), 204101
.

[5] D.S. Chezganov, D. K. Kuznetsov, V. Ya. Shur, “Simulation of spatial distribution of elec-
tric field after electron beam irradiation of M gO-doped LilNbO3 covered by resist layer”,
Ferroelectrics, 496, (2016), 70-78.

[6] A. Maslovskaya, A. Pavelchuk, “Simulation of dynamic charging processes in ferroelectrics
irradiated with SEM”, Ferroelectrics, 476, (2015), 157-167.

[7] R.V. Brizitskii, N. N. Maksimova, A. G. Maslovskaya, “Theoretical analysis and numerical
implementation of a stationary diffusion-drift model for charging polar dielectrics”, Comp.
Math. Math. Phys., 62, (2022), (to appear).

[8] G.V. Alekseev, V.G. Romanov, “One class of nonscattering acoustic shells for a model of
anisotropic acoustics”, J. Appl. Industr. Math., 6 (1), (2012), 1-5.

[9] G.V. Alekseev, V. A. Levin, D. A. Tereshko, “The optimization method in design problems
of spherical layered thermal shells”, Doklady Physics., 62 (10), (2017), 465-469.



206 Inverse problem of recovering the electron diffusion coefficient

[10] R.V. Brizitskii, Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem
for the nonlinear convection-diffusion-reaction equation”, Inverse Ill-Posed Probl., 26:6,
(2018), 821-833.

[11] G.V. Alekseev, “Optimization in stationary problems of heat and mass transfer and mag-
netic hydrodynamics.”, M.: Nauch. Mir., 2010, 412.

Received by the editors The first author was supported by the Ministry
June 15, 2022 of Science and Higher Education of the Rus-
sian Federation (Project No. 122082400001-8),
the second author was supported by the Rus-
sian Science Foundation (Project number: 22-
21-00271).

Maxcumosa H. H., Bpusuuxutd P. B. ObparHas 3aJa17a BOCCTAHOBJICHUS KO-
spdurmenra quddys3un 37eKTPOHOB. /[a/IbHEBOCTOUHBIH MATEMATHIECKHUI
skypaas. 2022. T. 22. Ne 2. C. 201-206.

AHHOTAIINS

PaccymoTpena obpatnast 3a1a4a Jj1s1 ompejienenns: Koaddurmenta auddy-
317 JIEKTPOHOB 110 IIJIOTHOCTH 3aPsi/ia, M3MEPEHHOI B HEKOTOPOM (bparMeH-
Te 3aPs’KEHHOT0 CErHETOYIEKTPUKA. B paMKax ONTHMU3AIMOHHOTO TTOIX0IA
9Ta 3a/a9a CBOJIUTCS K 3aJlade MYJIbTUILINKATUBHOTO yupasjienus. Jlokasa-
Ha pa3peniuMoCTh PacCMaTpUBAEMON IKCTPEMAJIbHON 3a/1a4u.
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