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Numerical solution of shielding problem for

3D model of electrostatics in the presence of

anisotropic layer

An economical numerical algorithm for solving the problem of designing a shielding
device for a 3D model of electrostatics is proposed and implemented. The algorithm
is based on the use of a multilayered shell. Its first layer is anisotropic, and the re-
maining layers are filled with one of two predefined isotropic materials according to
an alternating design scheme. It is shown that the applying of the developed algo-
rithm enables us to design easy-to-implement shielding shells with high efficiency.
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Introduction

In recent years, much attention has been paid to the development of design technologies
for devices for electrical cloaking and shielding of material bodies [1–3]. An important
trend in electrical shielding is associated with the use of radially anisotropic cylindrical or
spherical shells (see [4–6]). It was shown in [4] that a high cloaking effect can be achieved
even for a single-layer cylindrical shell, but in the case of a small diameter of the cloaked
body and/or at a very high anisotropy coefficient.

We also note a series of works [9–15] related to the development of efficient numer-
ical algorithms for solving the design problems of cylindrical or spherical cloaking and
shielding devices for models of electrostatics and magnetostatics.

In this article, we will consider a more general physical scenario, when a multilayer
shell with generally anisotropic layers is used for shielding. Using the results of [13–15] we
propose below an economical numerical algorithm for solving design problem of shielding
shell (hereafter shield) for 3D model of electrostatics. The algorithm is based on using
M -layered spherical shell. The first layer of this shell is anisotropic while remaining
M−1 layer are homogeneous, isotropic and their permittivities are obeyed the alternating
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design rule with respect to the given pair permittivities εmin, εmax. We show with the
help of numerical experiments that our algorithm enables us to design layered shielding
shells having high efficiency and simplicity of technical realization.

1 Statement of direct and inverse problems

We start with formulation of the direct problem of electrostatics, considered in the entire
space R3. Let us assume that the space R3 is filled with a homogeneous medium with a
constant permittivity ε0 > 0 and that a constant electric field Ea = −gradUa is created
in R3 corresponding to the electric potential Ua described in spherical coordinates r, θ, ϕ
by the formula Ua(r, θ) = −Ear cos θ

b , where Ea = const, b = const. Let us further assume
that an object (Ω, ε) where Ω is a spherical layer Ω = {x ∈ R3 : a < r < b}, ε is the
permittivity of the medium filling Ω is placed into R3. Then the field Ua changes and
takes the form U = Ua + Us. Here Us is the scattered (electrical) response of the object
caused by the placing of an object (Ω, ε) into R3.

We assume that the medium occupying the region Ω is piecewise homogeneous in the
sense that Ω can be divided into a finite number of elementary spherical layers

Ωm = {Rm−1 < r = |x| < Rm}, m = 1, 2, ...,M, R0 = a, RM = b, (1)

of the same width d = (b− a)/M . Each of them is filled with a homogeneous anisotropic
(generally) medium, whose constant permittivity εm is described by the diagonal in
spherical coordinates tensor εm = diag(εrm, εtm), m = 1, 2, ...,M . Here εrm (or εtm) is
the radial (or tangential) component of the tensor εm. This partition of Ω into parts Ωm
corresponds to the following global radial and tangential permittivities εr, εt of Ω:

εr(x) =

M∑
m=1

εrmχm(x), x ∈ Ω, εt(x) =

M∑
m=1

εtmχm(x), x ∈ Ω. (2)

Here χm is the characteristic function of the elementary layer Ωm, which is equal to
one in Ωm and zero outside Ωm. Below, to describe a piecewise homogeneous medium
filling Ω, we will use the vector e = (er1, et1, ..., erm, etm), composed of the permeabilities
εm = (εrm, εtm) of individual layers Ωm, and the pair (Ω, e) will be referred to as the
electrical (material) shell.

In addition to the sets (1), we define the sets Ω0 = {x ∈ R3 : |x| < a} and ΩM+1 =
{x ∈ R3 : |x| > b} and set Um = U |Ωm

, m = 0, 1, ...,M + 1. Then the direct problem of
finding the total field U = (U0, U1, ..., UM+1) reduces to finding all M+2 fields Um in the
regions Ωm, m = 0, 1, ...,M + 1 by solving the following electrical conjugation problem:

∆U0 = 0 in Ω0, ∆UM+1 = 0 in ΩM+1, div(εmgradUm) = 0 in Ωm, m = 1,M, (3)

gradUm × n− gradUm+1 × n = 0 at r = Rm, m = 0, 1, ...,M, (4)

ε0
∂U0

∂r
= εr1

∂U1

∂r
at r = R0, εrM

∂UM
∂r

= εe
∂UM+1

∂r
at r = RM , (5)

εrm
∂Um
∂r

= εr(m+1)
∂Um+1

∂r
at r = Rm, m = 1, ...,M − 1, (6)

U0(x) = O(1) as r = |x| → 0, UM+1(x)→ Ua(x) as r →∞, (7)
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considered in the space R3. Similarly to [6], we look for the fields Um, m = 1,M as

U0(r, θ)=α0

(r
b

)
cos θ in Ω0, Um(r, θ)=

(
αm

(r
b

)νm
+ βm

(
b

r

)νm+1
)

cos θ in Ωm,

UM+1(r, θ)=

(
−Ea

(r
b

)
+βM+1

(r
b

)−2
)

cos θ in ΩM+1, νm=
1

2

(√
1+ 8

(
εtm
εrm

)
−1

)
. (8)

Here α0, α1, β1,. . . , αM , βM , βM+1 are some coefficients. It is easy to check that functions
(8) satisfy all equations in (3) and conditions (7) for any values of coefficients αm, βm.
It remains to choose them so that the boundary conditions (4)–(6) are satisfied.

Substituting (8) into (4)–(6), we arrive at the following system of 2M + 2 linear
algebraic equations with respect to 2M + 2 coefficients α0, αm, βm, βM+1, m = 1,M :

α0 − α1

(
b

R0

)−ν1+1

− β1

(
b

R0

)ν1+2

= 0,

εiα0 − εr1α1ν1

(
b

R0

)−ν1+1

+ εr1β1 (ν1 + 1)

(
b

R0

)ν1+2

= 0,

αm

(
b

Rm

)−νm
+ βm

(
b

Rm

)νm+1

− αm+1

(
b

Rm

)−νm+1

− βm+1

(
b

Rm

)νm+1+1

= 0,

εrmαmνm

(
b

Rm

)−νm+1

− εrmβm(νm+1)

(
b

Rm

)νm+2

− εr(m+1)αm+1νm+1

(
b

Rm

)−νm+1+1

+

+εr(m+1)βm+1(νm+1 + 1)

(
b

Rm

)νm+1+2

= 0, m = 1,M − 1,

αM

(
b

RM

)−νM+1

+ βM

(
b

RM

)νM+2

− βM+1

(
b

RM

)3
= −Ea,

εrMαMνM

(
b

RM

)−νM+1

+ εrMβM (νM + 1)

(
b

RM

)νM+2

+ 2εeβM+1

(
b

RM

)3
= −εeEa. (9)

Solving the system (9) and substituting the found values αm, βm into (8), we can find
the corresponding fields U0 in Ω0, Um in Ωm, m = 1,M and UM+1 in ΩM+1, forming
the desired solution of the problem (3)–(7).

Denote by U [e] = (U0[e], U1[e], . . . , UM+1[e]), where e = (er1, et1, . . . , erM , etM ) is
the solution of the problem (3)–(7) corresponding to the permittivity tensors εm =
= diag(εrm, εtm) in Ωm and to the constant permittivity ε0 in Ω0 and ΩM+1. Let BR be
a ball of sufficiently large radius R containing Ω inside it. Let Ωe = ΩM+1 ∩BR.

We remind that our goal is to solve the inverse problem for the model (3)–(7) associ-
ated with designing shielding shells. This inverse problem consists of finding values er1,
et1,..., erM , etM from the following condition [14,15]:

∇U0[e] = 0 in Ω0, e ≡ (εr1, εt1, ..., εrm, εtm). (10)

The shell (Ω, e), which ensures the exact fulfilment of condition (10), is called a perfect
shielding shell or simply a shield.
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2 Using optimization method. Numerical results

For solving our inverse problem we apply the optimization method. Similarly [14,15] we
define the bounded set K = {e : 0 < εmin ≤ εrm, εtm ≤ εmax, m = 1,M} to which we
refer to as a control set. Here given positive constants εmin and εmax are lower and upper
boundaries of the control set K. Let us define the cost functional

Ji(e)=
‖∇U0[e]‖L2(Ω0)

‖∇Ue‖L2(Ω0)
, ‖∇U0[e]‖L2(Ω0)=

∫
Ω0

|∇U0[e]|2dx, ‖∇Ue‖2L2(Ω0)=

∫
Ω0

|∇Ue|2dx, (11)

and formulate the following control problem:

Ji(e)→ min, e ∈ K. (12)

Problem (12) was studied in [14, 15] in the special case when all layers are isotropic.
It has been shown that the optimal solution εopt has the bang-bang property and corre-
sponds to the alternating design with respect to the pair (εmin, εmax). It means that

εopt1 = εopt3 = ... = εoptM−1 = εmin, εopt2 = εopt4 = ... = εoptM = εmax. (13)

Moreover, it turned out that under the smallness condition εmin ≈ 0.01, J(εopt) tends
to zero with increasing contrast εmax/εmin and the number of layers M . The smallness
condition is restrictive, requiring the use of special materials for the technical implemen-
tation of the solutions obtained. Below we will show that the presence of anisotropic
layers makes it possible to get rid of this limitation and to design a highly efficient shell.

More specifically, the designed shell will consist of the first anisotropic layer corre-
sponding to the pair (εr1, εt1) and M−1 isotropic layers corresponding to the alternating
design (ε2, ε3, ..., εM ). Here all parameters εr1, εt1, ε2,..., εM take only one of two values
εmin and εmax. Taking into account the specified structure of the designed shell, the so-
lution of the shielding problem consists of two stages. First, we substitute the indicated
data (εr1, εt1), ε2, ε3, ..., εM into system (9) and find the coefficient α0 by solving it.
Next, we determine the field U0 using the first formula in (8) and calculate the value of
the functional Ji(e) using (11). A sufficiently small value of Ji(e) will correspond to a
high shielding efficiency of the shell being designed. Below we will refer to the described
algorithm as Algorithm 1. The result of Algorithm 1 is an approximate optimal solution
ε∗ = ((εr1, εt1), ε2, ..., εM ) to problem (12).

Let us discuss now the results of the numerical solution of the shielding problem
using Algorithm 1 for the following pairs of (εmin, εmax): (0.021, 2.1) and (2.1, 2100). The
externally applied field has the form: Ea = −gradUa, Ua(r, θ) = −Ear cos θ

b . Our first test
concerns to the first pair εmin = 0.021, εmax = 2.1. The results of the numerical solution
of problem (12) using Algorithm 1 in the form of values of the permittivities εr1, εt1,
ε2 = εmax, ε3 = εmin, εM = εmax of the first, second, third and last layers, respectively,
and the value of Ji(e

∗) where ε∗ = (εr1, εt1; ε2, ..., εM ), are presented in Table 1 for
even values of M varying from 2 to 16. The remaining values of the permittivities εm,
m = 4, 5, ...,M − 1 are determined from the relations (13). Table 1 shows that all values
of Ji(e

∗) correspond to low shielding efficiency. This can be explained by the low contrast
εmax/εmin = 100. The second disadvantage of Table 1 is the value of εmin = 0.021 which
corresponds to a metamaterial that is difficult to implement.
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Table 1: Shielding pr.: εmin = 0.021, εmax = 2.1, Ra = 0.03, Rb = 0.05, Contrast = 100.

M (εr1, εt1) ε2 ε3 εM Ji(e
∗)

2 (2.1, 0.021) 2.1 1.222× 100

4 (2.1, 0.021) 2.1 0.021 2.1 2.341× 10−1

8 (2.1, 0.021) 2.1 0.021 2.1 8.882× 10−2

12 (2.1, 0.021) 2.1 0.021 2.1 6.322× 10−2

16 (2.1, 0.021) 2.1 0.021 2.1 5.341× 10−2

Table 2: Shielding pr.: εmin = 2.1, εmax = 2100, Ra = 0.03, Rb = 0.05, Contrast = 1000.

M (εr1, εt1) ε2 ε3 εM Ji(e
∗)

2 (2100, 2.1) 2100 5.829× 10−3

4 (2100, 2.1) 2100 2.1 2100 3.908× 10−4

8 (2100, 2.1) 2100 2.1 2100 2.811× 10−5

12 (2100, 2.1) 2100 2.1 2100 8.679× 10−6

16 (2100, 2.1) 2100 2.1 2100 4.739× 10−6

In order to increase the shielding efficiency of the shell being designed, it is sufficient
to increase the contrast of the pair (εmin, εmax). This can be seen from the analysis of
Table 2 which is an analogue of Table 1 for the pair (εmin, εmax) = (2.1, 2100) with
contrast 1000. Note that the value εmin = 2.1 describes the permittivity of teflon, and
εmax = 2100 describes the permittivity of barium titanate. It can be seen that the value
of Ji(e

∗) decreases from 5.829× 10−3 to 4.739× 10−6 as M increases from 2 to 16. The
last value Ji(e

∗) corresponds to the high shielding efficiency of the shell (Ω, ε∗).

3 Conclusion

The results obtained confirm the high efficiency of the shielding shell with high contrast
even in the case of a small number of homogeneous layers, the first of which is filled with
an anisotropic medium, while the remaining ones are isotropic.

References

[1] B. Wood, J. B. Pendry, “Metamaterials at zero frequency”, J. Phys. Cond. Matter, 19,
(2007), 076208.

[2] F. Gomory, M. Solovyov, J. Souc, C. Navau, “Experimental realization of a magnetic cloak”,
Science, 335, (2012), 1466–1468.

[3] J. Pendry, D. Shurig, D. R. Smith, “Controlling electromagnetic fields”, Science, 312,
(2006), 1780–1782.

[4] H. Kettunen, H. Wallen, A. Sihvola, “Cloaking and magnifying using radial anisotropy”, J.
Appl. Phys., 114, (2013), 110–122.



200 A. V. Lobanov

[5] H. Wallen, H. Kettunen, A. Sihvola, “Anomalous absorption, plasmonic resonances, and
invisibility of radially anisotropic spheres”, Radio Sci., 50, (2015), 18–28.

[6] S. Batool, M. Nisar, F. Frezza, F. Mangini, “Cloaking using the anisotropic multilayer
sphere”, Photonics, 7:52, (2020), 1–12.

[7] S. Batool, M. Nisar, F. Mangini, F. Frezza, “Cloaking using anisotropic multilayer circular
cylinder”, AIP Advanc., 10, (2020), 119904.

[8] A. N. Tikhonov, Ya. V. Arsenin, “Methods for Solving Ill-Posed Problems”, Nauka, Moscow,
1986, 181.

[9] G. V. Alekseev, D. A. Tereshko, “Optimization method for axisymmetric problems of elec-
tric cloaking of material bodies”, Comp. Math. Math. Phys., 59, (2019), 207–223.

[10] G. V. Alekseev, D. A. Tereshko, “Optimization method in material bodies cloaking with
respect to static physical fields”, J. Inv. Ill-posed Prob., 27, (2019), 845–857.

[11] G. V. Alekseev, D. A. Tereshko, Y. V. Shestopalov, “Optimization approach for axisymmet-
ric electric field cloaking and shielding”, Inv. Prob. Sci. Eng., 29:1, (2021), 40–55.

[12] G. V. Alekseev, Yu. E. Spivak, “Numerical analysis of two-dimensional magnetic cloaking
problems based on an optimization method”, Diff. Eq., 56:9, (2020), 1219–1229.

[13] G. V. Alekseev, Yu. E. Spivak, “Optimization-based numerical analysis of three-dimensional
magnetic cloaking problems”, Comp. Math. Math. Phys., 61, (2021), 212–225.

[14] G. V. Alekseev, A. V. Lobanov, “Optimization analysis of electrostatic cloaking problems”,
J. Appl. Ind. Math., 14, (2020), 599–609.

[15] G. V. Alekseev, A. V. Lobanov, “Effective method for solving the problem of cloaking an
axisymmetric model of electrostatics”, Smart Innov. Syst. Tech., 272, (2022), 353–361.

Received by the editors
June 16, 2022

This work was supported by the state assign-
ment of Institute of Applied Mathematics FEB
RAS (Theme No. AAAA-A20-120120390006-0).

Лобанов А.В. Численное решение задачи экранирования для трехмер-
ной модели электростатики при наличии анизотропного слоя. Дальне-
восточный математический журнал. 2022. Т. 22. № 2. С. 195–200.

АННОТАЦИЯ

Предлагается и численно реализуется экономичный численный алго-
ритм решения задачи экранирования для трехмерной модели электро-
статики. Алгоритм основывается на использовании многослойной обо-
лочки, первый слой которой является анизотропным, а остальные слои
заполнены одним из двух заранее заданных изотропных материалов.
Показывается на основе проведенных вычислительных экспериментов,
что экранирующее устройство, спроектированное с помощью разрабо-
танного метода, обладает простотой технической реализацией и наивыс-
шей эффективностью в рассматриваемом классе устройств.

Ключевые слова: обратные задачи, задача экранирования, метод оп-
тимизации.
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