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Predicting subdifferential switching surface

in a steady-state complex heat transfer

problem using deep learning

A boundary value problem of complex heat transfer have been considered in the
work. A method for determination of a switching surface with subdifferential bound-
ary conditions based on the use of deep learning has been proposed. A method uses
a neural network trained on a dataset of numerical solutions of the steady-state
complex heat transfer forward problems. The obtained results are verified by com-
parison with the numerical experiments.
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Introduction

The search for new ways to solve complex heat transfer systems is relevant in connection

with practical applications in combustion chambers [1] and in glass production [2]. The

system consists of the heat equation and the integro-differential radiative transfer equa-

tion which, due to the complexity of the solution, is replaced by the P1–approximation [3].

Solving complex heat transfer problems with boundaries which depend on external con-

ditions are the most relevant due to practical applications.

The stationary radiative and conductive heat transfer problem is described by the

system consisting of the heat transfer equation and P1–approximation of the radiative

transfer equation. The steady-state model of complex heat transfer in the bounded do-

main Ω ⊂ R2 including the boundary conditions has the following form [4], [5]:

−a∆θ + bκa(|θ|θ3 − ϕ) = 0, −α∆ϕ+ κa(ϕ− |θ|θ3) = 0, (1)

∂nθ + β(θ − θb)|Γ = 0, α∂nϕ+ γ(ϕ− θ4
b )|Γ = 0, (2)
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where θ is the normalized temperature, ϕ is the normalized intensity of radiation, aver-

aged over all directions, κa is the absorption coefficient, ∂n denotes the derivative in the

direction of the outward normal n to the domain boundary Γ = ∂Ω.

The coefficients a, b, α, β, γ are expressed as follows:
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where h is the heat transfer coefficient of the boundary domain [kg/(s3K)], ε is the

surface emissivity, k is the coefficient of thermal conductivity [kg · cm/s3K], ρ is the

density [kg/cm3], cv is the specific heat capacity [cm2/s2K], σ is the Stefan-Boltzmann

constant [kg/s3K4], n is the refractive index, Tmax is the maximum temperature in the

non-normalized model [K], κ is the total attenuation factor [1/cm], κs is the scattering

coefficient [1/cm], A is the scattering anisotropy coefficient, A ∈ [−1; 1].

We assume that the parameter γ has the following form [6]:

γ(ϕ) =


γ1, ϕ > θ4

0,

[γ1, γ2], ϕ = θ4
0,

γ2, ϕ < θ4
0,

(3)

where γ1, γ2, θ0 are given functions, 0 ≤ γ1 ≤ γ2, 0 ≤ θ0 ≤ θb. Then the boundary

conditions (2) can be written in the following form [6]:

−α∂nϕ ∈ ∂g(ϕ), g(ϕ) =


γ0

2
(ϕ− θ4
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b ,
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2
(θ4

0 − θ4
b ) if ϕ < θ4

b ,
(4)

where ∂g denotes the subdifferential of a convex function g.

The subdifferential boundary value problem (1)–(3) was studied in [6], where a priori

estimates for the weak solution were obtained and the unique solvability of the problem

was proved.

In systems employing “bang-bang” control law, which is used in (3), switching surface

separates regions of maximum and minimum control efforts. The switching surface is

defined by parameters P , γ1 and γ2, where P is the switching point, γ1 and γ2 are values

of γ before and after switching. As soon as γ1 and γ2 are considered given, the goal of

this work is to determine parameter P .

1 Numerical simulation and dataset generation

To solve the stationary forward problem of complex heat transfer (1)–(2), where γ = const,

Newton’s method is used. The conditions for the convergence of Newton’s method are

established in a similar way as in the proof of the uniqueness of a weak solution to the

problem (1)–(2) [4]. When solving the forward problem with a switching surface defined
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by the functions P , γ1 and γ2, satisfying to the subdifferential boundary condition (3),

we obtain a switching point P for given γ1 and γ2 if the method converges.

The problem is simulated numerically using FreeFEM++ software [7]. A square with

the side length of L was chosen as the computational domain. The temperatures θb and

θ0 are chosen as follows:

θb = F +
( y

BL

)G
, θ0 = θb,

where B, G, F are given parameters.

To solve the problem using machine learning, it is necessary to generate a dataset.

The model parameters and their minimum and maximum values used in data generation

are shown in Table 1. Thus, the physical characteristics of the medium and the boundary

conditions vary. The variable ranges have been chosen to be as wide as possible to cover

different problems. Dataset is generated according to the uniform distribution.

Table 1: Model parameters

Parameter Minimum

value

Maximum

value

Units

ρ 0.15 · 10−6 7500 · 10−6 kg/cm3

cv 5 · 106 52 · 106 cm2/s2K

Tmax 273 3000 K

n 1 2 –

k 0 6000 kg · cm/s3K

κ 0.01 2 1/cm

κs 0 0.01 1/cm

A −1 1 –

L 25 150 cm

γ1 0.0 0.25 –

γ2 0.25 0.5 –

h 0.1 500 kg/(s3K)

B 2.0 4.0 –

G 1.0 3.0 –

F 0.0 1 − (1/B)G –

2 Machine learning

To find the switching point, the supervised learning method is used. The selected model

learns to find non-obvious statistical relationships between the input and the output

data. The input data are the parameters presented in Table 1. The output data is the

switching point P , i.e. the point where ϕ = θ4
0.

Standard metrics MAE (mean absolute error) and R2 (coefficient of determination)

are used to evaluate the prediction results of neural network:

MAE =
1

n

n∑
i=1

|yi − xi| , R2 = 1−
∑n

i=1 (yi − xi)∑n
i=1 (yi − y)

,
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where yi is the predicted value, xi is the numerical simulation value and y = 1
n

∑n
i=1 yi.

The neural network was trained using generated dataset. A total of 16,000 experiments

have been performed. The model was trained using 10-fold cross validation. The results

are as follows: R2 = 0.928, MAE = 2.02. High R2 value (close to unity) indicates a high

quality of prediction. MAE indicates an error in absolute values, but since the value of

the switch point is a percentage of the border size (0−100% of L), it can be considered

the same as a percentage error. The error of 2% is a small deviation, which shows the high

quality of prediction. Four examples for different mediums have been performed using

the FreeFEM++ software. Switch surfaces for each of them have been predicted using

the trained neural network. Mediums can be interpreted as glass, iron, stainless steel,

and titanium. The comparison of numerical solutions and neural network predictions is

shown in fig. 1.

Results specified as “real” in Figure 1 are results of numerical solution of the subdif-

ferential complex heat transfer problem obtained using Newton method in FreeFEM++

software. They are compared to switching points of γ function obtained using the neural

network prediction.

(a) Glass (b) Iron

(c) Stainless steel (d) Titanium

Fig. 1: Comparison of real and predicted γ switch points.
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3 Conclusion

The deep learning method to solve the subdifferential boundary value problem of complex

heat transfer was utilized. To form the dataset, 16,000 forward problems for the complex

heat transfer model have been solved numerically using FreeFEM++ software. Deep

learning model prediction has shown high accuracy. Examples for different mediums are

presented. Thus, deep learning has shown great potential to solve non-standard problems

of subdifferential type.
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АННОТАЦИЯ

В работе рассмотрены задачи сложного теплообмена. Предлагается ме-
тод для нахождения поверхности переключения, основанный на глу-
боком обучении. В методе используется обученная на базе данных чис-
ленных решений прямой задачи нестационарного сложного теплообмена
нейронная сеть. Полученные результаты были верифицированы путем
сравнения с результатами численных экспериментов.
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