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Predicting subdifferential switching surface
in a steady-state complex heat transfer
problem using deep learning

A boundary value problem of complex heat transfer have been considered in the
work. A method for determination of a switching surface with subdifferential bound-
ary conditions based on the use of deep learning has been proposed. A method uses
a neural network trained on a dataset of numerical solutions of the steady-state
complex heat transfer forward problems. The obtained results are verified by com-
parison with the numerical experiments.
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Introduction

The search for new ways to solve complex heat transfer systems is relevant in connection
with practical applications in combustion chambers [1] and in glass production [2]. The
system consists of the heat equation and the integro-differential radiative transfer equa-
tion which, due to the complexity of the solution, is replaced by the P;—approximation [3].
Solving complex heat transfer problems with boundaries which depend on external con-
ditions are the most relevant due to practical applications.

The stationary radiative and conductive heat transfer problem is described by the
system consisting of the heat transfer equation and P;—approximation of the radiative
transfer equation. The steady-state model of complex heat transfer in the bounded do-
main ©Q C R? including the boundary conditions has the following form [4], [5]:
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where 6 is the normalized temperature, ¢ is the normalized intensity of radiation, aver-
aged over all directions, k, is the absorption coefficient, d,, denotes the derivative in the
direction of the outward normal n to the domain boundary I' = 0.

The coefficients a, b, a, 3, v are expressed as follows:
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where h is the heat transfer coefficient of the boundary domain [kg/(s*K)], € is the
surface emissivity, k is the coefficient of thermal conductivity [kg - cm/s3K], p is the
density [kg/cm?], ¢, is the specific heat capacity [em?/s?K], o is the Stefan-Boltzmann
constant [kg/s*K?*], n is the refractive index, Tynq, is the maximum temperature in the
non-normalized model [K], « is the total attenuation factor [1/cm], ks is the scattering
coefficient [1/cm], A is the scattering anisotropy coefficient, A € [—1;1].

We assume that the parameter v has the following form [6]:
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where 71,72, 0y are given functions, 0 < v; < 72, 0 < 0y < 6. Then the boundary
conditions (2) can be written in the following form [6]:
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where dg denotes the subdifferential of a convex function g.

The subdifferential boundary value problem (1)—(3) was studied in [6], where a priori
estimates for the weak solution were obtained and the unique solvability of the problem
was proved.

In systems employing “bang-bang” control law, which is used in (3), switching surface
separates regions of maximum and minimum control efforts. The switching surface is
defined by parameters P, y; and -2, where P is the switching point, «; and 5 are values
of « before and after switching. As soon as 7; and 7, are considered given, the goal of
this work is to determine parameter P.

1 Numerical simulation and dataset generation

To solve the stationary forward problem of complex heat transfer (1)—(2), where v = const,
Newton’s method is used. The conditions for the convergence of Newton’s method are
established in a similar way as in the proof of the uniqueness of a weak solution to the
problem (1)—(2) [4]. When solving the forward problem with a switching surface defined
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by the functions P, 77 and 9, satisfying to the subdifferential boundary condition (3),
we obtain a switching point P for given ~; and -5 if the method converges.

The problem is simulated numerically using FreeFEM++ software [7]. A square with
the side length of L was chosen as the computational domain. The temperatures 8, and
0y are chosen as follows: ;

G
=F+(5F) - o=t

where B, G, F' are given parameters.

To solve the problem using machine learning, it is necessary to generate a dataset.
The model parameters and their minimum and maximum values used in data generation
are shown in Table 1. Thus, the physical characteristics of the medium and the boundary
conditions vary. The variable ranges have been chosen to be as wide as possible to cover
different problems. Dataset is generated according to the uniform distribution.

Table 1: Model parameters

Parameter Minimum Maximum Units
value value
P 0.15-1076 7500 - 10~ kg/cm?
Co 5-10° 52 -10° cm? /s?K
Tinaz 273 3000 K

n 1 2 —
k 0 6000 kg - cm/s3K
K 0.01 2 1/cm
Ks 0 0.01 1/cm
A -1 1 —
L 25 150 cm
Y 0.0 0.25 -
Y2 0.25 0.5 -
h 0.1 500 kg/(s3K)
B 2.0 4.0 -
G 1.0 3.0 -
F 0.0 1 - (1/B)¢ -

2 Machine learning

To find the switching point, the supervised learning method is used. The selected model
learns to find non-obvious statistical relationships between the input and the output
data. The input data are the parameters presented in Table 1. The output data is the
switching point P, i.e. the point where ¢ = 3.

Standard metrics MAE (mean absolute error) and R? (coefficient of determination)
are used to evaluate the prediction results of neural network:

Do (yi — i)
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where y; is the predicted value, z; is the numerical simulation value and 3 = % Z:‘L:I Y-

The neural network was trained using generated dataset. A total of 16,000 experiments
have been performed. The model was trained using 10-fold cross validation. The results
are as follows: R? = 0.928, MAE = 2.02. High R? value (close to unity) indicates a high
quality of prediction. MAE indicates an error in absolute values, but since the value of
the switch point is a percentage of the border size (0—100% of L), it can be considered
the same as a percentage error. The error of 2% is a small deviation, which shows the high
quality of prediction. Four examples for different mediums have been performed using
the FreeFEM++ software. Switch surfaces for each of them have been predicted using
the trained neural network. Mediums can be interpreted as glass, iron, stainless steel,
and titanium. The comparison of numerical solutions and neural network predictions is
shown in fig. 1.

Results specified as “real” in Figure 1 are results of numerical solution of the subdif-
ferential complex heat transfer problem obtained using Newton method in FreeFEM++
software. They are compared to switching points of  function obtained using the neural
network prediction.
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Fig. 1: Comparison of real and predicted v switch points.
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3 Conclusion

The deep learning method to solve the subdifferential boundary value problem of complex
heat transfer was utilized. To form the dataset, 16,000 forward problems for the complex
heat transfer model have been solved numerically using FreeFEM++ software. Deep
learning model prediction has shown high accuracy. Examples for different mediums are
presented. Thus, deep learning has shown great potential to solve non-standard problems
of subdifferential type.
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AHHOTAIS

B pabore paccmoTpensr 3aaun ciioKHOTO Temoobmena. [Ipegmaraercs me-
TOJ, JIUIsl HAXOXKJIEHUsI ITOBEPXHOCTU HEPEKJIIOYeHHs, OCHOBAHHBIA Ha TJIy-
60koM 0OyueHuu. B MeTose ucnosnb3yercs: oOydeHHast Ha 6a3e JIAHHBIX TUC-
JIEHHBIX PEIIeHHIT IPSMOii 331891 HECTAIOHAPHOTO CJIOYKHOTO TEIIO0OMEHA
HeiipornHas ceThb. Iloydenubie pe3ynbTaTsl ObLIN BEPUQPUIMPOBAHBI IIyTEM
CPaBHEHUSI C PE3YJIbTaTaMU YHUCJAEHHBIX SKCIEPUMEHTOB.

Kirouessie cioBa: cybduppepenyuarvrasn xpaesas 3adaua, eaybokoe obyue-
HUE, HEUPOHHDIE CEMU, CAONCHBLT MENAOOOMEN.
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