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Penalty method to solve an optimal control

problem for a quasilinear parabolic equation

An optimal control problem for a quasilinear parabolic equation simulating the ra-
diative and conductive heat transfer in a bounded three-dimensional domain under
constraints on the solution in a given subdomain is considered. The solvability of
the optimal control problem is proved. An algorithm for solving the problem, based
on the penalty method, is proposed.
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Introduction

The procedure of endovenous laser ablation (EVLA) is safe and sufficiently effective in

the treatment of varicose veins. During EVLA, a laser optical fiber is inserted into the

damaged vein. Then the laser radiation is transmitted through the fiber which at this

time is pulled out of the vein. The end of the optical fiber is usually covered with a

carbonized layer (optical fiber tip). The carbonized layer divides the laser energy into

the fiber tip heating and radiation. The heat from the fiber tip is transmitted through

the blood and surrounding tissue by the conductive heat transfer. The heat exchange is

significantly increased by the flow of bubbles formed at the heated fiber tip. The radiation

entering the blood and surrounding tissue is partially absorbed with the release of heat.

As a result, the generated thermal energy causes significant heating of the vein which

leads to its obliteration.

Mathematical modeling of radiation and thermal processes arising during EVLA is

important to determine optimal parameters of radiation that provide a sufficiently high
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temperature inside the vein for successful obliteration, on the other hand, the generated

temperature field should be relatively safe for the live tissue surrounding the vein.

Mathematical model of EVLA takes into account the conductive heat transfer, as well

as the radiation transfer and absorption with heat release. The flow of bubbles formed at

the heated fiber tip makes a significant contribution to the temperature distribution in the

model domain. In [1], based on the evaluation of experimental data, the heat transfer by

the flow of bubbles is modeled using a piecewise constant thermal conductivity coefficient

which depends on temperature as follows: when the temperature at some point reaches

95◦ C, the coefficient of thermal conductivity increases 200 times.

Optimal control problems for the mathematical model of EVLA are studied in [2,3].

In [2], an optimal control problem of EVLA is posed, which consists in approximation of

a given temperature profile at a certain point of the model domain. In [3], the similar as

in [2] optimal control problem is studied. Here, the objective functional is taken such that

its minimization allows one to reach the given temperature distribution in different parts

of the model domain. This makes it possible to provide a sufficiently high temperature

inside the vein for its successful obliteration and a safe temperature in the perivenous

tissue. The unique solvability of the initial-boundary value problem is proved, on the

basis of which the solvability of the optimal control problem is shown. An algorithm for

finding a solution of the optimal control problem is proposed. Its efficiency is illustrated

by a numerical example.

In the current work, an optimal control problem for the model of endovenous laser

ablation in a bounded three-dimensional domain Ω with reflecting boundary Γ = ∂Ω is

considered. The problem is to minimize the functional

J(θ) =

∫
Gd

(θ|t=T − θd)
2
dx→ inf

on solutions of the initial-boundary value problem:

σ∂θ/∂t− div(k(θ)∇θ)− βϕ = u1χ, −div(α∇ϕ) + βϕ = u2χ, x ∈ Ω, 0 < t < T, (1)

k(θ)∂nθ + γ(θ − θb)|Γ = 0, α∂nϕ+ 0.5ϕ|Γ = 0, θ|t=0 = θ0. (2)

In this case, the following restrictions are set:

u1,2 ≥ 0, u1 + u2 ≤ P, θ|Gb
≤ θ∗.

Here, θ is the temperature, ϕ the radiation intensity averaged over all directions, α the

diffusion coefficient for optical radiation, µa the absorption coefficient, k(θ) the coefficient

of thermal conductivity, σ(x, t) the product of the specific heat capacity and the volume

density, u1 describes the power of the source spending on heating the fiber tip, u2 is the

power of the source spending on radiation, χ is equal to the characteristic function of the

part of the medium in which the fiber tip is located divided by the volume of the fiber

tip. The functions θb, θ0 define the boundary and initial temperature distributions. We

denote by ∂n the derivative in the direction of the outward normal n to the boundary

Γ. It is required to provide the closeness of the temperature distribution to a desired

temperature field θd at the final time t = T in the Gd subdomain, while the temperature

in the subdomain Gb does not exceed a constant critical value θ∗.
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1 Formalization of the optimal control problem

In what follows, we assume that Ω is a Lipschitz bounded domain, Γ = ∂Ω,Q = Ω×(0, T ),

Σ = Γ× (0, T ). We denote by Lp, 1 ≤ p ≤ ∞, the Lebesgue space and by H1 the Sobolev

space W 1
2 . The space Lp(0, T ;X) (respectively, C([0, T ];X)) consists of p-integrable on

(0, T ) (respectively, continuous on [0, T ]) functions with values in a Banach space X.

Denote H = L2(Ω), V = H1(Ω), and V ′ the dual of V . Then we identify H with its dual

space H ′ such that V ⊂ H = H ′ ⊂ V ′, and denote by ‖ · ‖ the norm in H, and by (h, v)

the value of functional h ∈ V ′ on the element v ∈ V coinciding with the inner product

in H if h ∈ H.

Let the following conditions hold:

(i) 0 < σ0 ≤ σ ≤ σ1, |∂σ/∂t| ≤ σ2, σj = Const.

(ii) 0 < k0 ≤ k(s) ≤ k1, |k′(s)| ≤ k2, s ∈ R, kj = Const.

(iii) θ0 ∈ H, γ ∈ L∞(Γ), γ ≥ γ0 = Const > 0, θb ∈ L∞(Σ), θd ∈ Gd.

(iv) 0 < α0 ≤ α(x) ≤ α1, 0 < β0 ≤ β(x) ≤ β1, x ∈ Ω.
We define a nonlinear operator A : V → V ′ and linear operator B : V → V ′ using

the following equality valid for any θ, v, ϕ, w ∈ V :

(A(θ), v) = (k(θ)∇θ,∇v) +

∫
Γ

γθvdΓ = (∇h(θ),∇v) +

∫
Γ

γθvdΓ,

where

h(s) =

s∫
0

k(r) dr; (Bϕ,w) = (α∇ϕ,∇w) + (βϕ,w) +
1

2

∫
Γ

ϕwdΓ.

Further, by the following bilinear form, we define the inner product in V :

(u, v)V = (∇u,∇v) +

∫
Γ

uvdΓ.

The corresponding norm is equivalent to the standard norm of the space V .

Definition 1. Let u1,2 ∈ L2(0, T ). The pair θ, ϕ ∈ L2(0, T ;V ) is a weak solution of the
problem (1), (2) if σθ′ ∈ L2(0, T ;V ′) and

σθ′ +A(θ)− βϕ = g + u1χ, θ(0) = θ0, Bϕ = u2χ, (3)

where
θ′ = dθ/dt, g ∈ L∞(0, T ;V ′), (g, v) =

∫
Γ

γθbvdΓ.

Remark 1. Since (σθ)′ = σθ′ + θ∂σ/∂t ∈ L2(0, T ;V ′) and σθ ∈ L2(0, T ;V ), then σθ ∈
C([0, T ];H), and therefore the initial condition makes sense.

It follows from the Lax-Milgram lemma that for any function g ∈ H there is a unique
solution of equation Bϕ = g. Moreover, the inverse operator B−1 : H → V is continuous.
Therefore, we can exclude the radiation intensity ϕ = u2B

−1χ and formulate the optimal
control problem as follows.
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Problem (CP)

J(θ) =

∫
Gd

(θ|t=T − θd)2dx→ inf, σθ′ +A(θ) = g + u, θ(0) = θ0,

θ|Gb
≤ θ∗, u ∈ Uad.

Here,

Uad = {u = u1χ+ u2βB
−1χ : u1,2 ∈ L2(0, T ), u1,2 ≥ 0, u1 + u2 ≤ P}.

2 Preliminary results

In the article [5], the following result is obtained.

Lemma 1. Let conditions (i) – (iv) hold and u ∈ L2(0, T ;V ′). Then there is a solution
to the problem

σθ′ +A(θ) = g + u, θ(0) = θ0, (4)

such that θ ∈ L∞(0, T ;H) and the following estimate is valid:

‖θ(t)‖2 + ‖θ‖2L2(0,T ;V ′) ≤ C
(
‖θ0‖2 + ‖g + u‖2L2(0,T ;V ′)

)
,

where C > 0 does not depend on θ0, g, and u.

Lemma 2. Let conditions (i) – (iv) hold, u = 0, θ0 ≤ θ∗ a.e. in Ω, θb ≤ θ∗ a.e. in Σ,
and θ be a solution to the problem (4). Then θ ≤ θ∗ a.e. in Ω× (0, T ).

Proof. Multiplying in the sense of inner product in H the first equation in (4) by
v = max{θ − θ∗, 0} ∈ L2(0, T ;V ), we get

(σv′, v) + (k(θ)∇v,∇v) +

∫
Γ

γθvdΓ = 0.

Discarding the nonnegative second and third terms, we arrive at the estimate

d

dt
(σv, v) ≤ (σtv, v) ≤ σ2‖v‖2.

Integrating the last inequality with respect to time and taking into account that v|t=0 = 0,
we obtain

σ0‖v(t)‖2 ≤ (σv(t), v(t)) ≤ σ2

t∫
0

‖v(τ)‖2dτ.

Based on the Gronwall lemma, we conclude that v = 0 and therefore θ ≤ θ∗ a.e. in
Ω× (0, T ).

Lemmas 1 and 2 imply a non-empty set of admissible pairs of the Problem (CP) and
the boundedness of a minimizing sequence of admissible pairs {θm, um} ∈ L2(0, T ;V )×
Uad such that J(θm)→ j = inf J, where

σθ′m +A(θm) = g + um, θm(0) = θ0, θm|Gb
≤ θ∗. (5)

Similarly [4], passing to the limit in system (5), it is possible to establish the solvability
of the Problem (CP).

Theorem 1. Let conditions (i) – (iv) hold, θ0 ≤ θ∗ a.e. in Ω, θb ≤ θ∗ a.e. in Σ. Then
a solution of the Problem (CP) exists.
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3 Penalty problem

Let us consider the following optimal control problem with the parameter ε > 0 whose

solutions approximate the solution of the Problem (CP) as ε→ +0.

Problem (CPε)

Jε(θ) =

∫
Gd

(θ|t=T − θd)2dx+
1

ε

T∫
0

∫
Gb

F (θ)dxdt→ inf,

σθ′ +A(θ) = g + u, θ(0) = θ0, u ∈ Uad.

Here,

F (θ) =

{
0, if θ ≤ θ∗,
(θ − θ∗)2, if θ > θ∗.

The estimates presented in Lemma 1 make it possible, similarly as in the proof of

Theorem 1, to prove the solvability of the problem with the penalty.

Theorem 2. Let conditions (i) – (iv) hold. Then a solution of the problem (CPε) exists.

Consider the approximation properties of solutions to the problem with the penalty.

Let {θε, uε} be solutions to the Problem (CPε) and {θ, u} be a solution to the Problem

(CP). Then,
σθ′ε +A(θε) = g + uε, θε(0) = θ0. (6)

Since θ|Gb
≤ θ∗, the following inequalities are true:

∫
Gd

(θε|t=T − θd)2dx ≤ J(θ),

T∫
0

∫
Gb

F (θε)dxdt ≤ εJ(θ).

From the estimates obtained, using if necessary subsequences as ε→ +0, similarly as in

the proof of Theorem 1, we can prove the existence of functions û ∈ Uad, θ̂ ∈ L2(0, T ;V )

such that

uε → û weakly in L2(0, T ;H), θε → θ̂ weakly in L2(0, T ;V ), strongly in L2(0, T ;H);

T∫
0

∫
Gb

F (θε)dxdt→
T∫

0

∫
Gb

F (θ̂)dxdt and

T∫
0

∫
Gb

F (θε)dxdt→ 0, as ε→ +0.

Therefore, F (θ̂) = 0 and θ̂|Gb
≤ θ∗. Convergence results are sufficient to pass to the

limit as ε → +0 in the state system (6) and to prove that the limit pair {θ̂, û} ∈
L2(0, T ;V ) × Uad is admissible to the problem (CP). Since the functional J is weakly

lower semicontinuous, that is

j ≤ J(θ̂) ≤ lim inf J(θε) ≤ J(θ) = j = inf J,

then the pair {θ̂, û} is a solution to the problem (CP).
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Theorem 3. Let conditions (i) – (iv) hold, θ0 ≤ θ∗ a.e. in Ω, θb ≤ θ∗ a.e. in Σ. If

{θε, uε} are solutions to the problem (CPε) for ε > 0, then there is a sequence as ε→ +0

uε → û weakly in L2(0, T ;H), θε → θ̂ weakly in L2(0, T ;V ), strongly in L2(0, T ;H),

where {θ̂, û} is a solution to the problem (CP).
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АННОТАЦИЯ

Рассмотрена задача оптимального управления для квазилинейного па-
раболического уравнения, моделирующего радиационно-кондуктивный
теплообмен в ограниченной трехмерной области, при ограничениях на
решение в заданной подобласти. Доказана разрешимость задачи опти-
мального управления. Предложен алгоритм решения задачи, основан-
ный на методе штрафных функций.

Ключевые слова: нелинейные системы уравнений в частных произ-
водных, радиационный теплообмен, оптимальное управление, метод
штрафов
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