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Model predictive control of dynamic systems

with mixed uncertainty and its application

to supply chain management

The paper is devoted to a discrete-time linear system with constraints on states and
control inputs under conditions of interval and stochastic uncertainty. We use the
model predictive control approach and get the optimal control strategy that brings
the system to a setpoint. The developed results are applied to the inventory control
problem in a supply chain. A numerical example is studied.
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Introduction

The paper studies the model predictive control (MPC) [1] of a linear dynamic system with

discrete time subject to constraints and mixed model uncertainty. We assume that the

system is affected by additive disturbances of various nature. Some of the disturbances

are random with known parameters of the probability distribution, others are given

by intervals and nothing more is known about them. Both states and control actions

are restricted. We minimize the expected MPC performance index subject to state and

control constraints and interval-assigned uncertain inputs. We reduce the problem to a

deterministic quadratic programming problem using the interval analysis tools [2] and

the multiple-objective optimization techniques [3].

The results are applied to the problem of inventory control in a supply chain with an

uncertain demand. The most common is a stochastic approach to modelling uncertainty

in inventory control systems. The uncertain demand is assumed to be random. But what

if there is not enough historical data for its probabilistic description? In these cases, we

can assume that the demand uncertainty is unknown-but-bounded [4, 5], and estimate
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bounds of possible demand values based on available data or practical experience. How-

ever, in practice, we often face the situation when we have partial information about

demands. For some products we do not have historical demand data, while for others

we do. In addition, we can have quite stable orders, mostly within given limits, from

some consumers, and random orders from others. In such cases, an uncertain aggregate

demand can be decomposed in two sub-vectors, one of which is unknown-but-bounded

(or interval), and the other is stochastic. These assumptions are consistent with the

mixed interval-stochastic model uncertainty discussed in the paper. Finally, we consider

a numerical example and show the effectiveness of the developed MPC strategy which

provides the supply chain with a minimum expected level of storage, but a high level of

service.

1 Model description and problem statement

We consider the linear system whose dynamics is described by the state space model:

x(k + 1) = x(k) +Bu(k) + Cd(k) + Cw(k), (1)

where x(k) ∈ Rn is the system state, the initial state x(0) is assumed to be fixed and

given, u(k) ∈ Rm is the control input, d(k), w(k) ∈ Rl are the uncertain disturbance

inputs of various nature, and k is the discrete time index. The matrices B ∈ Rn×m and

C ∈ Rn×l describe the system structure, they are fixed and known.

The disturbance d(k) is assumed to lie within in a known interval but the rest is

unknown:
d(k) ∈D, (2)

where D ∈ IRl, D =
[
D,D

]
≥ 0. This provides an interval uncertainty in the system.

We follow the notation of the informal international standard [6]. Intervals and inter-

val objects (vectors, matrices) are denoted in bold, x, x are the lower and upper bounds

of the interval x, IRn = {x = [x, x] , x ≤ x, x, x ∈ Rn} is the set of all n-dimensional in-

tervals in the classical interval arithmetic IR, KRn = {x = [x, x] , x, x ∈ Rn} is the set of

all n-dimensional intervals in the Kaucher complete interval arithmetic KR [7].

The disturbance w(k) is the vector of white noises with a zero mean and the given

covariance matrix W . This forms a stochastic uncertainty in the system.

Both expected states and control actions must be non-negative and bounded:

E
{
x(k + 1)

∣∣ x(k)
}
∈X, (3)

u(k) ∈ U , (4)

where E{·|·} denotes the conditional mean; X ∈ IRn,X =
[
0, X

]
; U ∈ IRq,U =

[
0, U

]
.

We define the performance index as follows:

J(k + p|k) = E

{
p∑

i=1

((
x(k + i|k)− xs

)>
Q
(
x(k + i|k)− xs

)
−

−Q1

(
x(k + i|k)− xs

)
+ u(k + i− 1|k)>Ru(k + i− 1|k)

) ∣∣∣ x(k)

}
,

(5)
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where x(k + i|k) is the state at the time k + i which is predicted at the time k, x(k) or

x(k|k) denotes the state measured at the time k; xs is the setpoint or target that the

system will seek to reach; u(k + i|k) is the predictive control at the time k + i which

is computed at the time k; p is the prediction horizon; Q ∈ Rn×n, Q1 ∈ R1×n and

R ∈ Rm×m are the weighting matrices such that Q,R are symmetric positive definite

matrices and Q1 ≥ 0; the first term
(
x(k + i|k) − xs

)>Q(x(k + i|k) − xs
)

penalizes the

state deviation from the target, the second linear term Q1

(
x(k+ i|k)−xs

)
penalizes the

state negative deviation from the target, and the last term u(k+ i− 1|k)>Ru(k+ i− 1|k)

penalizes the control efforts.

The problem to be solved at the time k is to compute a sequence of the predictive

controls u(k|k), u(k + 1|k), . . . , u(k + p − 1|k) which minimizes performance index (5)

subject to system dynamics (1) and constraints (2)–(4). We reduce it to an interval

quadratic programming problem where the uncertain inputs are represented by intervals.

Since the input data are interval, the objective value is also interval. We calculate the

lower and upper bounds of the objective values of the interval quadratic programming

problem analytically using interval analysis and formulate a two-objective optimization

problem. We then transform the problem into a conventional quadratic programming

problem with a single objective by using multi-objective optimization.

According to the MPC approach, at the time k we calculate the predictive controls

u(k|k), u(k+1|k), . . . , u(k+p−1|k), but use only the first of them and obtain the feedback

control u(k) = u(k|k) as a function of the state x(k). Then the state x(k+1) is measured,

the control horizon is moved by one, and the optimization is repeated at the next time

k + 1. The result is the feedback control strategy Φ = {u(k) = u (x(k), k) , k ≥ 0}.

2 Synthesis of predictive control strategy

The theorem gives a sequence of predictive controls at the time k.

Theorem. The vector of predictive controls ũ(k) =
(
u(k|k)>, u(k + 1|k)>, . . . , u(k +

p − 1|k)>
)> that minimizes performance index (5) subject to system dynamics (1) and

constraints (2)–(4) is defined at the time k as a solution to the quadratic programming

problem with the criterion Y (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k) under the constraints(
B 0n×m 0n×m . . . 0n×m

)
ũ(k) ∈ X 	 CD − x(k) and ũ(k) ∈ Ũ . Here H,G(k) are the

block matrices of the type:

H =


H11 H12 . . . H1p

H21 H22 . . . H2p

...
. . .

...

Hp1 Hp2 . . . Hpp

 , Hij =


(p− j + 1)B>QB, i < j,

R+ (p− j + 1)B>QB, i = j,

(p− i+ 1)B>QB, i > j,

G(k) =
((
x(k)− xs

)>Q− 1
2Q1

)
BK + midDF ,

where
K = (K1 K2 . . .Kp), Ki = (p− i+ 1)Im,
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F =


F11 F12 . . . F1p

F21 F22 . . . F2p

...
. . .

...

Fp1 Fp2 . . . Fpp

 , Fij =

{
(p− j + 1)C>QB, i ≤ j,
(p− i+ 1)C>QB, i > j,

0n×m is the zero matrix of the dimension n×m, Im is the unit matrix of the dimension m,

Ũ =
(
U>,U>, . . . ,U>

)>, D̃ =
(
D>,D>, . . . ,D>

)>, CD is the result of multiplying the

real matrix C by the interval vector D, DF is the result of multiplying the interval vector

D̃> by the real matrix F , midx is the midpoint of the interval x, x	y =
[
x− y, x− y

]
is the internal subtraction in KR.

It is worth noting that, due to the interval uncertainty in the system, we can only

steer the state to a tube sufficiently close to the target xs, and keep the state trajectory,

on average, within the target tube. The target tube is a sequence of the sets that at each

time contain all the states whose future trajectories can be kept inside the constraints,

for all admissible disturbances [4]. It is clear that the width of this tube depends on the

width of the initial uncertainty intervals. Indeed, the problem of keeping the state x(k), on

average, in some tube X(a, b) = [a, b] has a solution if and only if, for all x(k) ∈X(a, b),

there is a control u(k) ∈ U so that E
{
x(k+ 1)

∣∣ x(k)
}

= x(k) +Bu(k) +Cd(k) ∈X(a, b)

for all d(k) ∈D. That takes place if and only if x(k) +Bu(k) +CD ∈X(a, b), and then

x(k) + Bu(k) ∈ X(a, b) 	CD. It makes sense if and only if X(a, b) 	CD ∈ IRn, that

is a− CD ≤ b− CD. We can argue that CD − CD ≤ b− a and widCD ≤ widX(a, b).

Therefore, the minimum width of the tube, within which, on average, the state x(k) can

be kept for all possible values of the demand, is given by widCD = CD − CD.

3 Inventory control problem in a supply chain: example

We can apply the above results to multi-echelon inventory optimization in a supply chain

with an uncertain demand. We describe the supply chain by the dynamic network model

in which the nodes represent warehouses and the arcs are controllable and uncontrollable

flows in the network. The network dynamics can be described by equation (1), where

x(k) represents the storage levels in the network nodes; u(k) is the controllable flows

which redistribute resources between the network nodes, possibly process them, and

plan deliveries from outside; d(k), w(k) are the uncontrollable flows which represent the

demand in the network nodes that can arise from outside and other nodes. The matrices

B and C describe the network structure. As the unit of time k we can take, for example,

a day, a week, a month, or a longer period. Constraints (3), (4) define the capacities

and requirements, such as storage and order quantity limits. In (3), the lower bound

equal to zero means that an out-of-stock is undesirable, but possible. The target xs in

performance index (5) defines a desired target storage level. Given the fact that we deal

with storage levels, the goal of keeping the state is close to but, preferably, not below the

target is consistent with (5). We suggest setting xs at zero during the first simulation

and waiting for the target tube X(0,widCD) to be received. We calculate a service level

in the network nodes as the proportion of satisfied demand and if it is not high enough,
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we will gradually increase the target and form a safety stock until a required service level

is received.

Let us consider now the supply chain represented by Figure 1. It has three interrelated

production-distribution centres represented by three nodes. Nodes 1 and 2 make products

A and B, these products are used later for making product AB in node 3. The controllable

A

B

AB

1

2

3

u1

u2

u4

u3

d1, w1

d2, w2

d4, w4

d5, w5

d3, w3

Fig. 1: Supply chain with three

nodes and controllable (solid)

and uncontrollable (dashed)

flows between them

flows u1, u2 describe the production levels of A in

node 1 and B in node 2, respectively, u3 describes a

production line in node 3 which takes some amount

of products A and B to produce the same amount

AB in node 3. The arc u4 models an additional flex-

ible capacity which can be split in any proportion

between two production lines A and B. If u4 works at

full force, the flexible capacity is fully used to produce

B, while if it works at zero force, the flexible capacity

is fully used to produce A. The uncontrollable flows

d1, w1, d2, w2, d3, w3 represent the demand for prod-

ucts A, B and AB from outside. And d4, w4, d5, w5

represent the uncontrollable redistribution flows be-

tween the nodes. The structural matrices B and C

for the system have the form:

B =

1 0 −1 −1

0 1 −1 1

0 0 1 0

 , C =

−1 0 0 −1 0

0 −1 0 0 −1

0 0 −1 1 1

 .

We assume that X =
(
[0, 130] [0, 120] [0, 150]

)>, U =
(
[0, 170] [0, 50] [0, 100] [0, 70]

)>,
D =

(
[5, 25] [20, 30] [60, 80] [0, 20] [0, 10]

)>.
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Fig. 2: Trajectories of xi (solid) and levels

widCDi (dashed)

The example is an adapted ver-

sion of the example from [4]. We

added the white noise w with

a zero mean and the covariance

W = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
l

)
, σ2

i =

0.25 widDi. We assume that the de-

mand cannot be backlogged and de-

mands during stockouts are com-

pletely lost. The initial state is

x(0) = (130 120 150)> and the tar-

get is xs = (0 0 0)>. The weight-

ing matrices are chosen as Q = In,

Q1 = (1 1 1)>, R = Im, the predic-

tion horizon is p = 6, the problem

is solved for 100 time steps. We car-

ried out modelling and simulation in

MATLAB.
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Figure 2 shows the inventory dynamics in the network nodes. In all the nodes, a

decreasing trend of the storage levels can be observed. In our case, we get CD =(
[−45,−5] [−40,−20] [−80,−30]

)> and widCD = (40 20 50)>. Starting from some

timestep, the state trajectory, on average, lies within the minimal tube X(0,widCD).

As the simulation showed, we received high levels of service in the network: 98.72% in

node 1, 99.98% in node 2, and 99.67% in node 3. In this case, there is no need to increase

the target xs to form a safety stock.
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АННОТАЦИЯ

В работе рассматривается линейная система в дискретном времени с
ограничениями на состояния и управляющие воздействия в условиях
интервальной и стохастической неопределенности. Для синтеза опти-
мальной стратегии управления, приводящей систему к заданному со-
стоянию, используется подход на основе управления с прогнозирующей
моделью. Полученные результаты применены к задаче управления за-
пасами в цепи поставок. Рассмотрен численный пример.

Ключевые слова: линейная динамическая система, управление с прогно-
зирующей моделью, интервально-стохастическая неопределенность,
интервальный анализ, многокритериальная оптимизация, квадратич-
ное программирование, управление запасами, цепь поставок.


	Model description and problem statement
	Synthesis of predictive control strategy
	Inventory control problem in a supply chain: example
	References

