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Theoretical analysis of cloaking problem
for 3D model of heat conduction

The direct and extremal problems for the 3D heat conduction model are formulated
which are associated with designing spherical thermal cloaking devices. The solvabil-
ity of both problems is proved. An optimality system is constructed that describes
the necessary conditions for an extremum. Some properties of optimal solutions
which are consequence of the structure of the optimality system are established.
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Introduction

In recent years significant research has focused on design of invisibility cloaking devices.
Beginning with pioneering papers [1,2] the large number of papers was devoted to devel-
oping different schemes of cloaking material objects.

The first works in this field were focused on the electromagnetic cloaking. Then the
main results of the electromagnetic cloaking theory were expanded to an acoustic cloaking
and to cloaking static (magnetic, electric and thermal) fields (see, e.g., [3,4]).

Development of the above-mentioned approaches have opened up the opportunities
for creation the invisibility cloaking design strategies. They obtained the name of direct
design strategies as they were based on solving the forward electromagnetic (acoustic
or static) problems. It should be noted that the invisibility devices (hereafter, cloaks)
designed on the basis of direct strategies possess serious drawbacks. The main one is the
difficulty of their technical realization.

That is why the another cloak design strategy began develop recently. It obtained
the name of inverse design as it is related with solving inverse electromagnetic (acoustic
or static) problems (see [5,6]). The optimization method forms the core of the inverse
design methodology. This enables us to solve some substantial limitations of previous
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cloaking solutions. A growing number of papers is devoted to applying the inverse de-
sign methodology in various cloaking problems. Among them we mention [7-15] where
optimization method is applied for numerical solving design problems of cloaks, shields,
concentrators and other special functional devices.

In this paper optimization method is applied for study inverse problems for the 3D
stationary heat conduction model. These problems arise when designing thermal cloaking
devices. We prove the solvability of direct and control problems for the heat conduction
model under study, derive the optimality system which describes necessary conditions of
extremum and establish some properties of optimal solutions.

1 Statement of direct thermal scattering problem

We begin with statement of direct problem of heat conduction in bounded domain D
having the form of rectangular parallelepiped D = {(z,y, 2) : |z| < o, |y| < yo,|2| < 20}
(see figure 1). We shall assume that external field T¢ in D is created by two horizontal
boundaries 'y : 2z = —zp and I's : 2 = 29 which are kept at temperatures 77 and 75,
respectively, while the lateral boundaries are thermally insulated. By definition external
field T¢ satisfies equation kKo AT® = 0 in D and the following boundary conditions:

oT*

=0.
9 8y

y==yo

=T, T¢ =Ty, or”

z=z0 ox

T°|

zZ=—2Z0
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Here ko is a constant thermal conductivity of homogeneous isotropic medium (back-
ground) filling D.

We consider the scenario when a material shell (2, k), where Q is the spherical layer
a < r < b in spherical coordinates (7,0, ) which is filled by anisotropic medium char-
acterized by heat conductivity tensor k, is placed into D (see figure 2). Due placing the
shell (2, k) into D the field T° changes and takes the form 7" = T° + T*®, where T* is
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Fig. 2: The geometry of the prob-
lem for the case when a cloak is
placed in D.

Fig. 1: The geometry of the prob-
lem without cloak.
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the thermal response of (€2, k) which can be determined by solving the respective direct
heat conduction problem. In order to formulate the latter problem we denote by €; (or
2.) the interior (or exterior) of Q in D. Then the mentioned heat conduction problem
consists of finding a triple of functions: 7; in the interior €; of 2, Ty in 2 and T, in the
exterior Q of Q from the following relations [6, ch. 1]:

koAT; =0 in Q;, div(kVTy)=0inQ, kAT, =0in ., (1)
T T B
T |z=—z0: Ty, Te |Z=Z0 =Ty, Oz =Y, 8y =0, (2)
x==%z0 y==%yo
Ti Te
T, = To, koaa—:(/iVT)'natr:a, T, =T, koéi,) =(kVT) -natr=>b. (3)
n n

Here n is the outward unit normal to the boundary of Q.

We shall use a number of functional spaces when studying direct and control problems
under study. In particular we shall use the space H 1(()), where € is one of the domains
Q;,9,9., D, and spaces L>=(Q), H*(Q), L*(Q), where Q C D is an open measurable
subset. The scalar products and norms in H'(D), H*($2), L*(Q) will be denoted by

('7 ')I,D; ” : ||1,D; ('7 ')s,Q, H : ”8797 ('7 ')Q7 ” : HQ

Set
L = {n e L) ulx) > o, Hi, () = {n€ H'Q) : plx) > po}, o =const> 0.

We define a space X = H'(D) with the norm || - [|% :== || - |5 + |V - |
and its subspace Xy :={S € X : S|, = S|r, = 0}.

Now we introduce the following main assumptions to the data: 77, T5 and k:

(i) Ty € HY*(T,), Ty, € H'/?(T) and there exists a function 7° € X such that we
have TO‘FI = Tl, T0|F2 = TQ, ||T0||X S CT = CD (HT1||1/2,F1 + HT2||1/2,F2)' Here CD is
a constant which depends only on D.

dua, TV

(ii) tensor k is diagonal in spherical coordinates (r, 6, ¢) and its diagonal components
(radial, polar and azimuthal conductivities) k., ke and k, satisfy k. € L5(Q), kg €
LZE(Q), k, € L,;"é(ﬂ), kY = const > 0, k§ = const > 0, k2 = const > 0. '

Now we are able to define a weak solution of problem (1)—(3). To this end we multiply
every equation in (1) by S € X, integrate by part and add the results obtained. Using
Green formulae, assumption (ii) and (2), (3), we arrive at the following relations for
finding a triple T' = (T}, To, Te.) € X:

a(ko, k; T, 8) := ao(ko; T, S) + a(k; T,8) =0 VS € Xo, T | =T1, T | =To. (4)

Here, k := (ky, ko, k) while ag(ko; .,.) and a(k;.,.) are bilinear forms defined by

ao(ko; T, S) = ko / VT VSdx, a(k;T,S) ::/(kVT)~Vde.

Q;UQe Q
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Using formula for grad7 in spherical coordinates in domain 2 we have

aT 08 ko OT 0S k oT 08
kT,S)= | ky——d ——=—|d — _dx =
a(k: T, 5) or or X+/(r2 a0 89) X+/r231n203g084p x 5)
) 2

= al(kT;T7 S) + a2(k9;T7 S) + ag(k@;T, S)

Taking in account Holder inequality, formula for the norm || - || x, Poincaré inequality
IVT||% > 6| T||% for T € Xg, where the constant § > 0 depends on D, and (5), one can
easily derive the following estimates:

|lao(ko; T, S) + a(k; T, S)| < (ko + [[krl| oo (@) + kol oo (@) + kgl oo (@) 1T x 151 x,
ao(ko; T.T) + a(k; T, T) > kK°|VT|3 > 6K°|T|% VT € Xo, k° = min(ko, kY, kg, kD).

These estimates mean that the bilinear form ag(ko; -, -) +a(k; -, -) is continuous on X and
is coercive on Xg. Based on Lax-Milgram theorem one can prove the next theorem.

Theorem 1. Let, under assumptions (i), (i), K; C L (Q), Ky C L;’é (Q) and K3 C L,;"é}
are nonempty bounded sets. Then for any triple (k,, kg, k,) € K1 x Ko x K3 problem
(1)-(3) has a unique weak solution T = (T;,Ty,T.) € X which satisfies the estimate
IT||x < CoCLCr, Cy = (5k0)_1. Here, constant Cy depends on K1, Ko and K3 but is
independent of k,., kg, k.

2 Statement of inverse problem. Using optimization method.
Main results

As already stated our purpose is analysis of inverse problems arising when developing
technologies of designing thermal cloaking devices. We recall that the general problem of
thermal cloaking consists of finding the conductivities k,, kg, k., so that two conditions are
satisfied: VT; = 0in Q; and T, = T° in Q. [9]. Here T = (T}, Ty, T.) is the corresponding
solution of the direct problem (1)—(3). To solve this problem, we apply the optimization
method. To this end, we introduce the following cost functionals

L(T) = |IVT3, L(T) = |IT - Tull3, :/(T*Td)zdx, L(T) = 05 [L(T) + I(T)].- (6)
Q

We emphasize (see [6, ch. 1]) that just the functional I5(7T) is used to solve the cloaking
problem, while the functional I;(T") (or I2(T")) is used to solve the problem of internal
(or external) cloaking.

Let K = K1 x K3 x K3. Define the operator

G := (Go,G1,G2) : X x K — X % H1/2(I‘1) % Hl/Q(Fg)

where (Go(T, k), S) = ao(ko; T, S) + a(k; T, S) for all S € Xo, G1T =T|r, — Th, GoT =
T|r, — T> and rewrite weak formulation (4) of problem (1)—(3) as operator equation
G(T,u) = 0. It is assumed that controls k,, ke, k, can change in sets Ky, K>, K3 and
the following condition holds:
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() K1 C Hpo (), Kz C Hp(2), K3 C Hj, () are nonempty convex closed sets,
i 6 P
where s > 3/2, k¥ = const > 0, k:g = const > 0, kg = const > 0, ag > 0.
We consider the following control problem:

o « .
T K) = 2IT) + Lk 20+ Zlkol2a + Slkal2g > inf, GT,R) =0, (7)

Here, I(T) is a cost functional, ag, a7, s and ag are nonnegative parameters which
serve to regulate the relative importance of each of the terms in (7). Let

Zoa={(T k) € X x K : G(T, k) = 0,1(T) < oo}

be the set of admissible pairs for problem (7). We apply the mathematical procedure
developed in [7, ch. 1] for studying control problems arising when optimization method
is applied when solving inverse problems for linear heat conduction models. Based on
this procedure, one can prove the next theorems.

Theorem 2. Let, under assumptions (i), (j), I : X — R be a weakly lower semicontin-
uous functional and Z,q be a nonempty set. Let vy > 0, ag > 0, az > 0 and Ky, Ky, K3
be bounded sets or a; > 0, as > 0, ag > 0 and functional I(T) is bounded below. Then,
control problem (7) has at least one solution (T, k) = (T, ky, kg, k,) € X x K1 x K X K3.

Theorem 3. Let, under assumptions (i), (j), a1 > 0, ag >0, ag > 0 or a3 > 0, ag > 0,
ag > 0 and K;, Ko, K3 be bounded sets. Then control problem (7) for I = I;(T),
1 =1,2,3, has at least one solution (T, ky, kg, k,) € X x K1 x Ky x Ks.

Theorem 4. Let, under assumptions (i), (j), the pair (T, k) = (T, l%r,fcg,l% ) € X x
K1 x Ky x K3 be a solution of problem (7) and let a functional I(T') be continuously
differentiable at the point T'. Then there exists a unique Lagrange multiplier (R C17 Cg)
Xo x HY2(T'y)* x HY/?(T'y)* which is the solution of the Euler-Lagrange equation

ao(ko; W, R) + a(k; ¥, R) + (C1, Wr, + (G, r, = —(ao/2)(I'(T), ¥) VP € X, (8)

and the following variational inequalities hold:

o1 (b, by — k) + ar((kr — k)T, R) >0 Vk, € Ky, (9)
Ozz(Ag,k‘g — ]%0)379 + ag((kig — ]ACQ)T, R) >0 Vkg € Ko, (10)
az(ky, ky — kp)eo + as((ky — k)T, R) > 0 Vk, € Ks. (11)

Direct problem (4), the Euler- Lagrange equation (8) which has the meaning of the
adjoint problem for the adjoint state (R, (1, ¢s) and variational inequalities (9)—(11) with
respect to controls k:T, k;g, k:g, constitute the optimality system for control problem (7).
Based on analysis of the optimality system, one can establish sufficient conditions on
the data which provide the uniqueness and stability of solutions of particular control
problems. The optimality system (4), (8)—(11) can be also used to develop numerical
algorithms for solving control problem (7). The simplest one for the functional I5(7")
can be obtained by applying the fixed point iteration method for solving the optimality
system.
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3 Conclusion

In this paper, we studied control problems for the 3D heat conduction model. These
problems arise when optimization method is applied for solving thermal cloaking prob-
lems. Radial, polar and asimuthal conductivities k., kg and k, of the inhomogeneous
medium filling the cloaking shell play the role of controls. We proved the solvability of
direct and control problems and derived the optimality system describing the necessary
conditions of extremum. Based on analysis of the optimality system one can develop a
numerical algorithm for solving particular cloaking problem. The alternative one is based
on using one of the global minimization methods. We plan to devote a forthcoming paper
to studying the properties of the algorithms and to the comparative analysis of results
of numerical experiments performed using these algorithms.
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Anexcees I. B. Teopernyeckuii aHaan3 3aJa4i MACKUPOBKHU JIJIT TPEXMEp-
HOIt Mojiesin TerioobmeHa. JlapHeBOCTOUHBIH MaTeMaTHIeCKHE »KypHAJI.

2022. T. 22. Ne 2. C. 143-149.

AHHOTAITNS

CdopmysmmpoBaHbl IpsiMasi U IKCTPeMaJjbHasl 33JIa9d JIJIsi TPEXMEPHOU MO-
JIeJIA TeIJIOOOMEHa, CBSA3AaHHBIE C IPOEKTUPOBAHUEM C(HEPUIECKOTO TEIIo-
3aImuUTHOrO ycrpoiictsa. JlokazaHa pa3permmMocTs 00enx 3a/1a9, TOCTPOEHA
CHCTEMa ONTUMAJBLHOCTH, ONMUCHIBAIONIAsS HEOOXOIMMBbIE YCIOBUS SKCTPEMY-
Ma, YCTaHOBJIEHBI HEKOTOPBIE CBOMCTBA ONTUMAJIBHBIX DEIIeHUH, SBIISIONIH-
ecsl CJIeICTBHEM CTPYKTYDPBI CHCTEMBI ONTHMAJIBLHOCTH.

Kuttouessbie ciioBa: obpamuas 3adaya, menaooomen, paspetiumMocmy, Cucme-
MA ONMUMAALHOCTY
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