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Theoretical analysis of cloaking problem

for 3D model of heat conduction

The direct and extremal problems for the 3D heat conduction model are formulated
which are associated with designing spherical thermal cloaking devices. The solvabil-
ity of both problems is proved. An optimality system is constructed that describes
the necessary conditions for an extremum. Some properties of optimal solutions
which are consequence of the structure of the optimality system are established.
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Introduction

In recent years significant research has focused on design of invisibility cloaking devices.

Beginning with pioneering papers [1,2] the large number of papers was devoted to devel-

oping different schemes of cloaking material objects.

The first works in this field were focused on the electromagnetic cloaking. Then the

main results of the electromagnetic cloaking theory were expanded to an acoustic cloaking

and to cloaking static (magnetic, electric and thermal) fields (see, e.g., [3, 4]).

Development of the above-mentioned approaches have opened up the opportunities

for creation the invisibility cloaking design strategies. They obtained the name of direct

design strategies as they were based on solving the forward electromagnetic (acoustic

or static) problems. It should be noted that the invisibility devices (hereafter, cloaks)

designed on the basis of direct strategies possess serious drawbacks. The main one is the

difficulty of their technical realization.

That is why the another cloak design strategy began develop recently. It obtained

the name of inverse design as it is related with solving inverse electromagnetic (acoustic

or static) problems (see [5, 6]). The optimization method forms the core of the inverse

design methodology. This enables us to solve some substantial limitations of previous
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cloaking solutions. A growing number of papers is devoted to applying the inverse de-

sign methodology in various cloaking problems. Among them we mention [7–15] where

optimization method is applied for numerical solving design problems of cloaks, shields,

concentrators and other special functional devices.

In this paper optimization method is applied for study inverse problems for the 3D

stationary heat conduction model. These problems arise when designing thermal cloaking

devices. We prove the solvability of direct and control problems for the heat conduction

model under study, derive the optimality system which describes necessary conditions of

extremum and establish some properties of optimal solutions.

1 Statement of direct thermal scattering problem

We begin with statement of direct problem of heat conduction in bounded domain D

having the form of rectangular parallelepiped D = {(x, y, z) : |x| < x0, |y| < y0, |z| < z0}
(see figure 1). We shall assume that external field T e in D is created by two horizontal

boundaries Γ1 : z = −z0 and Γ2 : z = z0 which are kept at temperatures T1 and T2,

respectively, while the lateral boundaries are thermally insulated. By definition external

field T e satisfies equation κ0∆T e = 0 in D and the following boundary conditions:

T e
∣∣
z=−z0

= T1, T e
∣∣
z=z0

= T2,
∂T e

∂x

∣∣∣∣∣
x=±x0

= 0,
∂T e

∂y

∣∣∣∣∣
y=±y0

= 0.

Here κ0 is a constant thermal conductivity of homogeneous isotropic medium (back-

ground) filling D.

We consider the scenario when a material shell (Ω, κ), where Ω is the spherical layer

a < r < b in spherical coordinates (r, θ, ϕ) which is filled by anisotropic medium char-

acterized by heat conductivity tensor κ, is placed into D (see figure 2). Due placing the

shell (Ω, κ) into D the field T e changes and takes the form T = T e + T s, where T s is

Fig. 1: The geometry of the prob-

lem without cloak.

Fig. 2: The geometry of the prob-

lem for the case when a cloak is

placed in D.



Theoretical analysis of cloaking problem for 3D model of heat conduction 145

the thermal response of (Ω, κ) which can be determined by solving the respective direct

heat conduction problem. In order to formulate the latter problem we denote by Ωi (or

Ωe) the interior (or exterior) of Ω in D. Then the mentioned heat conduction problem

consists of finding a triple of functions: Ti in the interior Ωi of Ω, T0 in Ω and Te in the

exterior Ωe of Ω from the following relations [6, ch. 1]:

k0∆Ti = 0 in Ωi, div(κ∇T0) = 0 in Ω, k0∆Te = 0 in Ωe, (1)

Te
∣∣
z=−z0

= T1, Te
∣∣
z=z0

= T2,
∂Te
∂x

∣∣∣∣∣
x=±x0

= 0,
∂Te
∂y

∣∣∣∣∣
y=±y0

= 0, (2)

Ti = T0, k0
∂Ti
∂n

= (κ∇T ) · n at r = a, Te = T0, k0
∂Te
∂n

= (κ∇T ) · n at r = b. (3)

Here n is the outward unit normal to the boundary of Ω.

We shall use a number of functional spaces when studying direct and control problems

under study. In particular we shall use the space H1(Ω̃), where Ω̃ is one of the domains

Ωi,Ω,Ωe, D, and spaces L∞(Ω), Hs(Ω), L2(Q), where Q ⊂ D is an open measurable

subset. The scalar products and norms in H1(D), Hs(Ω), L2(Q) will be denoted by

(·, ·)1,D, ‖ · ‖1,D, (·, ·)s,Ω, ‖ · ‖s,Ω, (·, ·)Q, ‖ · ‖Q.

Set

L∞µ0
= {µ ∈ L∞(Ω) : µ(x) ≥ µ0}, Hs

µ0
(Ω) = {µ ∈ Hs(Ω) : µ(x) ≥ µ0}, µ0 =const> 0.

We define a space X = H1(D) with the norm ‖ · ‖2X := ‖ · ‖2D + ‖∇ · ‖2Ωi∪Ωe
+ ‖∇ · ‖2Ω

and its subspace X0 := {S ∈ X : S|Γ1
= S|Γ2

= 0}.
Now we introduce the following main assumptions to the data: T1, T2 and κ:

(i) T1 ∈ H1/2(Γ1), T2 ∈ H1/2(Γ2) and there exists a function T 0 ∈ X such that we

have T 0|Γ1
= T1, T 0|Γ2

= T2, ‖T 0‖X ≤ CT := CD
(
‖T1‖1/2,Γ1

+ ‖T2‖1/2,Γ2

)
. Here CD is

a constant which depends only on D.

(ii) tensor κ is diagonal in spherical coordinates (r, θ, ϕ) and its diagonal components

(radial, polar and azimuthal conductivities) kr, kθ and kϕ satisfy kr ∈ L∞k0r
(Ω), kθ ∈

L∞
k0θ

(Ω), kϕ ∈ L∞k0ϕ(Ω), k0
r = const > 0, k0

θ = const > 0, k0
ϕ = const > 0.

Now we are able to define a weak solution of problem (1)–(3). To this end we multiply

every equation in (1) by S ∈ X0, integrate by part and add the results obtained. Using

Green formulae, assumption (ii) and (2), (3), we arrive at the following relations for

finding a triple T = (Ti, T0, Te) ∈ X:

a(k0, k;T, S) := a0(k0;T, S) + a(k;T, S) = 0 ∀S ∈ X0, T
∣∣
Γ1

= T1, T
∣∣
Γ2

= T2. (4)

Here, k := (kr, kθ, kϕ) while a0(k0; ., .) and a(k; ., .) are bilinear forms defined by

a0(k0;T, S) := k0

∫
Ωi∪Ωe

∇T · ∇Sdx, a(k;T, S) :=

∫
Ω

(k∇T ) · ∇Sdx.
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Using formula for gradT in spherical coordinates in domain Ω we have

a(k;T, S) ≡
∫
Ω

kr
∂T

∂r

∂S

∂r
dx +

∫
Ω

(
kθ
r2

∂T

∂θ

∂S

∂θ

)
dx +

∫
Ω

kϕ

r2 sin2 θ

∂T

∂ϕ

∂S

∂ϕ
dx =

= a1(kr;T, S) + a2(kθ;T, S) + a3(kϕ;T, S).

(5)

Taking in account Hölder inequality, formula for the norm ‖ · ‖X , Poincaré inequality

‖∇T‖2D ≥ δ‖T‖2X for T ∈ X0, where the constant δ > 0 depends on D, and (5), one can

easily derive the following estimates:∣∣a0(k0;T, S) + a(k;T, S)
∣∣ ≤ (k0 + ‖kr‖L∞(Ω) + ‖kθ‖L∞(Ω) + ‖kϕ‖L∞(Ω)

)
‖T‖X‖S‖X ,

a0(k0;T, T ) + a(k;T, T ) ≥ k0‖∇T‖2D ≥ δk0‖T‖2X ∀T ∈ X0, k0 = min(k0, k
0
r , k

0
θ , k

0
ϕ).

These estimates mean that the bilinear form a0(k0; ·, ·)+a(k; ·, ·) is continuous on X and

is coercive on X0. Based on Lax-Milgram theorem one can prove the next theorem.

Theorem 1. Let, under assumptions (i), (ii), K1 ⊂ L∞k0r (Ω), K2 ⊂ L∞k0θ (Ω) and K3 ⊂ L∞k0ϕ
are nonempty bounded sets. Then for any triple (kr, kθ, kϕ) ∈ K1 × K2 × K3 problem

(1)–(3) has a unique weak solution T = (Ti, T0, Te) ∈ X which satisfies the estimate

‖T‖X ≤ C0C1CT , C0 =
(
δk0
)−1

. Here, constant C1 depends on K1, K2 and K3 but is

independent of kr, kθ, kϕ.

2 Statement of inverse problem. Using optimization method.
Main results

As already stated our purpose is analysis of inverse problems arising when developing

technologies of designing thermal cloaking devices. We recall that the general problem of

thermal cloaking consists of finding the conductivities kr, kθ, kϕ so that two conditions are

satisfied: ∇Ti = 0 in Ωi and Te = T e in Ωe [9]. Here T = (Ti, T0, Te) is the corresponding

solution of the direct problem (1)–(3). To solve this problem, we apply the optimization

method. To this end, we introduce the following cost functionals

I1(T ) = ‖∇T‖2Q, I2(T ) = ‖T − Td‖2Q =

∫
Q

(T−Td)2dx, I3(T ) = 0.5 [I1(T ) + I2(T )] . (6)

We emphasize (see [6, ch. 1]) that just the functional I3(T ) is used to solve the cloaking

problem, while the functional I1(T ) (or I2(T )) is used to solve the problem of internal

(or external) cloaking.

Let K = K1 ×K2 ×K3. Define the operator

G := (G0, G1, G2) : X ×K → X∗0 ×H1/2(Γ1)×H1/2(Γ2)

where 〈G0(T, k), S〉 = a0(k0;T, S) + a(k;T, S) for all S ∈ X0, G1T = T |Γ1
− T1, G2T =

T |Γ2 − T2 and rewrite weak formulation (4) of problem (1)–(3) as operator equation

G(T, u) = 0. It is assumed that controls kr, kθ, kϕ can change in sets K1, K2, K3 and

the following condition holds:
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(j) K1 ⊂ Hs
k0r

(Ω), K2 ⊂ Hs
k0θ

(Ω), K3 ⊂ Hs
k0ϕ

(Ω) are nonempty convex closed sets,

where s > 3/2, k0
r = const > 0, k0

θ = const > 0, k0
ϕ = const > 0, α0 > 0.

We consider the following control problem:

J(T, k) :=
α0

2
I(T ) +

α1

2
‖kr‖2s,Ω +

α2

2
‖kθ‖2s,Ω +

α3

2
‖kϕ‖2s,Ω → inf, G(T, k) = 0. (7)

Here, I(T ) is a cost functional, α0, α1, α2 and α3 are nonnegative parameters which

serve to regulate the relative importance of each of the terms in (7). Let

Zad = {(T, k) ∈ X ×K : G(T, k) = 0, I(T ) <∞}

be the set of admissible pairs for problem (7). We apply the mathematical procedure

developed in [7, ch. 1] for studying control problems arising when optimization method

is applied when solving inverse problems for linear heat conduction models. Based on

this procedure, one can prove the next theorems.

Theorem 2. Let, under assumptions (i), (j), I : X → R be a weakly lower semicontin-

uous functional and Zad be a nonempty set. Let α1 ≥ 0, α2 ≥ 0, α3 ≥ 0 and K1, K2, K3

be bounded sets or α1 > 0, α2 > 0, α3 > 0 and functional I(T ) is bounded below. Then,

control problem (7) has at least one solution (T, k) ≡ (T, kr, kθ, kϕ) ∈ X×K1×K2×K3.

Theorem 3. Let, under assumptions (i), (j), α1 > 0, α2 > 0, α3 > 0 or α1 ≥ 0, α2 ≥ 0,

α3 ≥ 0 and K1, K2, K3 be bounded sets. Then control problem (7) for I = Il(T ),

l = 1, 2, 3, has at least one solution (T, kr, kθ, kϕ) ∈ X ×K1 ×K2 ×K3.

Theorem 4. Let, under assumptions (i), (j), the pair (T̂ , k̂) ≡ (T̂ , k̂r, k̂θ, k̂ϕ) ∈ X ×
K1 × K2 × K3 be a solution of problem (7) and let a functional I(T ) be continuously

differentiable at the point T̂ . Then there exists a unique Lagrange multiplier (R̂, ζ̂1, ζ̂2) ∈
X0 ×H1/2(Γ1)∗ ×H1/2(Γ2)∗ which is the solution of the Euler-Lagrange equation

a0(k0; Ψ, R̂) + a(k̂; Ψ, R̂) + 〈ζ̂1,Ψ〉Γ1
+ 〈ζ̂2,Ψ〉Γ2

= −(α0/2)〈I ′(T̂ ),Ψ〉 ∀Ψ ∈ X, (8)

and the following variational inequalities hold:

α1(k̂r, kr − k̂r)s,Ω + a1((kr − k̂r)T̂ , R̂) ≥ 0 ∀kr ∈ K1, (9)

α2(k̂θ, kθ − k̂θ)s,Ω + a2((kθ − k̂θ)T̂ , R̂) ≥ 0 ∀kθ ∈ K2, (10)

α3(k̂ϕ, kϕ − k̂ϕ)s,Ω + a3((kϕ − k̂ϕ)T̂ , R̂) ≥ 0 ∀kϕ ∈ K3. (11)

Direct problem (4), the Euler-Lagrange equation (8) which has the meaning of the

adjoint problem for the adjoint state (R̂, ζ̂1, ζ̂2) and variational inequalities (9)–(11) with

respect to controls k̂r, k̂θ, k̂ϕ constitute the optimality system for control problem (7).

Based on analysis of the optimality system, one can establish sufficient conditions on

the data which provide the uniqueness and stability of solutions of particular control

problems. The optimality system (4), (8)–(11) can be also used to develop numerical

algorithms for solving control problem (7). The simplest one for the functional I2(T )

can be obtained by applying the fixed point iteration method for solving the optimality

system.
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3 Conclusion

In this paper, we studied control problems for the 3D heat conduction model. These

problems arise when optimization method is applied for solving thermal cloaking prob-

lems. Radial, polar and asimuthal conductivities kr, kθ and kϕ of the inhomogeneous

medium filling the cloaking shell play the role of controls. We proved the solvability of

direct and control problems and derived the optimality system describing the necessary

conditions of extremum. Based on analysis of the optimality system one can develop a

numerical algorithm for solving particular cloaking problem. The alternative one is based

on using one of the global minimization methods. We plan to devote a forthcoming paper

to studying the properties of the algorithms and to the comparative analysis of results

of numerical experiments performed using these algorithms.
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АННОТАЦИЯ

Сформулированы прямая и экстремальная задачи для трехмерной мо-
дели теплообмена, связанные с проектированием сферического тепло-
защитного устройства. Доказана разрешимость обеих задач, построена
система оптимальности, описывающая необходимые условия экстрему-
ма, установлены некоторые свойства оптимальных решений, являющи-
еся следствием структуры системы оптимальности.

Ключевые слова: обратная задача, теплообмен, разрешимость, систе-
ма оптимальности
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