УДК 517.9+519.6 MSC2020 49J40+65K15

© А.Я. Золотухин¹

Приближенное решение задачи Синьорини методом конечных элементов в трехмерном пространстве

Метод конечных элементов, как правило, применяется к двумерным областям. Здесь задача Синьорини решается методом конечных элементов, когда область — прямоугольный параллелепипед.

Ключевые слова: метод конечных элементов, задача Синьорини.

DOI: https://doi.org/10.47910/FEMJ202117

1. Постановка задачи

Пусть $G \subset \mathbb{R}^3$ — ограниченная область с достаточно регулярной границей Γ . Рассмотрим процесс установившегося движения жидкости в области Ω , ограниченной полупроницаемой мембраной. Как известно [1], давление u в Ω удовлетворяет уравнению

$$-\Delta u = f, (1)$$

где $\Delta u = \sum\limits_{i=1}^{3} \frac{\partial^{2} u}{\partial x_{i}^{2}}, \, x = (x_{1}, x_{2}, x_{3}) \in \Omega, \, \psi \in L_{2}(\Gamma)$ — давление жидкости на границе Γ (вне Ω). Если $u(x) \leqslant \psi(x)$, то жидкость может втекать в Ω , и потому расход жидкости отличен от нуля, т.е. $\frac{\partial u}{\partial \vec{n}} \geqslant 0$, где \vec{n} — внешний нормальный вектор к Γ . Если $u(x) \geqslant \psi(x)$, то жидкость стремится покинуть Ω , но мембрана препятствует такому движению, и, следовательно, расход жидкости отсутствует, т.е. $\frac{\partial u}{\partial \vec{n}} = 0$. Таким образом, выполнены следующие краевые условия:

$$\frac{\partial u}{\partial \vec{n}} \geqslant 0, \quad u - \psi \geqslant 0, \quad \frac{\partial u}{\partial \vec{n}} (u - \psi) = 0 \quad \text{п.в. на} \quad \Gamma.$$
 (2)

Условиями (2) граница Γ делится на две части: на одной выполняется равенство $u-\psi=0$, а на другой $\frac{\partial u}{\partial \vec{n}}=0$. Эти части заранее не известны.

 $^{^1}$ Тульский государственный университет, 300600, г. Тула, пр-т Ленина, 92. Электронная почта: <code>zolot_aj@mail.ru</code>

Известно [1], что вариационная постановка задачи (1)-(2) имеет вид

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 d\Omega - \int_{\Omega} f u d\Omega - \min$$
 (3)

на выпуклом замкнутом множестве

$$G = \left\{ u \in W_2^1(\Omega) : \gamma u \geqslant \psi, \quad \text{п.в. на} \quad \Gamma \right\},\tag{4}$$

где $\gamma u \in W_2^{1/2}(\Omega)$ — след функции $u \in W_2^1(\Omega)$ на Γ , $d\Omega = dx_1 dx_2 dx_3$. Ядро R_a билинейной формы $a(u,v) = \int\limits_{\Omega} \nabla u \nabla v \, d\Omega$ не пусто. Оно состоит из функций, постоянных на Ω . Размерность ядра R_a равна 1. Заметим, что задача (3)–(4) может и не иметь решения. Однако если

$$\int_{\Omega} f \, d\Omega < 0,\tag{5}$$

то эта задача разрешима [1], так как $J(u) \to +\infty$ при $||u|| \to \infty$. Условие (5) также гарантирует единственность решения [2]. Далее мы предполагаем, что условие (5) выполнено. Согласно [3] задача (3)–(4) эквивалентна следующей вариационной задаче: найти такую функцию $u \in G$, что

$$a(u, v - u) \geqslant (f, v - u)$$
 для всех $v \in G$, (6)

где
$$(f,v-u) = \int_{\Omega} f(v-u) d\Omega$$
.

2. Метод решения

Численное решение задачи проводилось методом конечных элементов, когда область Ω — прямоугольный параллелепипед со сторонами a, b и c. Введем систему координат, в которой начало координат совпадает с вершиной параллелепипеда Ω . Ребра, выходящие из этой вершины, лежат на положительных полуосях координат. Выберем параметр h так, чтобы числа $\frac{a}{h}, \frac{b}{h}$ и $\frac{c}{h}$ были четными. Произведем следующие три операции:

1) разрежем Ω на четное число слоев высоты h плоскостями, параллельными координатной плоскости x_1ox_2 , вдоль оси x_3o , т. е. точки деления, через которые проходят плоскости, лежат на оси x_3o с шагом h; 2) не передвигая слои, разрежем Ω на четное число слоев длины h плоскостями, параллельными координатной плоскости x_1ox_3 , вдоль оси x_2o ; 3) разрежем Ω на четное число слоев ширины h плоскостями, параллельными координатной плоскости x_2ox_3 вдоль оси x_1o . Объединение полученных кубов с ребром h совпадает с замыканием области Ω .

Опишем способы разбиения кубов. Рассмотрим куб $ABCDA^1B^1C^1D^1$ с ребром h. По построению вершина A — начало координат, B принадлежит оси x_1o , D — оси x_2o , а A^1 — оси x_3o . Разрезание кубов со стороной h проводим в порядке, обратном разрезанию исходного параллелепипеда.

Начнем разрезание с кубов, расположенных на плоскости x_1ox_2 . Из ряда кубов, ребро которых принадлежит оси x_1o , возьмем куб с ребром лежащим на оси x_2o , разрежем его на пять пирамид: $ABDA^1$, $DBCC^1$, $A^1C^1B^1B$, $A^1C^1DD^1$ и BDA^1C^1 (см. рис. 1, способ I). Этот способ разбиения куба на пирамиды будем называть первым.

Переходим к следующему кубу по оси x_1o , его разрезаем на пять пирамид: $ABCB^1$, $ACDD^1$, $AB^1A^1D^1$, $CB^1C^1L^1$ и ACB^1D^1 (см. рис. 1, способ II). Это второй способ разбиения куба на пирамиды.

Следующий куб разрезаем первым способом и т.д., пока не дойдем до конца ряда. Переходим на второй ряд по оси x_2o . Продолжаем с первого куба, т.е. куба, лежащего на оси x_1o . Его разрезаем вторым способом, следующий — первым и так далее, пока не дойдем до конца второго ряда. Процедуру продолжаем, пока не разрежем все кубы первого слоя.

Переходим на второй слой по оси x_3o . В случае, если куб лежит на кубе, разрезанном первым способом, то разрезаем его вторым способом, и наоборот. Процедуру продолжаем, пока не разрежем все кубы второго слоя. Переходим к следующему слою и так далее, пока не разрежем на пирамиды все кубы с ребром h.

Совокупность всех пирамид есть триангуляция \mathcal{T}_h области Ω, h — параметр триангуляции.

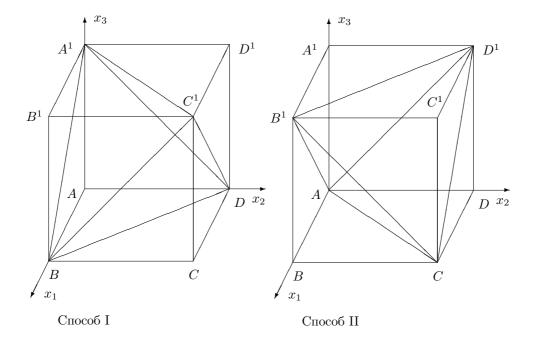


Рис. 1. Способы разрезания куба с ребром h.

Заметим, что если мы передвинем параллельно себе куб, разрезанный способом II, вдоль оси $x_{2}o$ до соприкосновения с кубом, разрезанным способом I, то вершина D совпадет с вершиной A, вершина C совпадет с вершиной B (см. рис. 1), получим равнобедренный треугольник B(DA)C, (вершина (DA) означает совпадение вершин) $BD=AC=h\sqrt{2}$. Его третья сторона состоит из отрезков BC и BC, принадлежащим разным кубам, т. е. левому и правому. Перечислим вершины пирамиды, сохраняя буквы вершин, которые совпали. Их заключим в скобки $B(DA)C(CB)(C^1B^1)$. Эта пирамида $-\frac{1}{4}$ октаэдра.

Переходим на второй ряд, куб с ребром, лежащим на оси x_{20} , разрежем способом II, т. е. можно передвинуть правый куб (по диагонали) (см. рис. 1) параллельно себе так, чтобы вершина B совпала с вершиной A, вершина C с D и C^1B^1 — с вершиной D^1 . Аналогично (см. рис. 1), передвигаем левый куб параллельно себе (по диагонали) так, чтобы вершина BD совпала с вершиной A, чтобы вершина C совпала с вершиной B, вершина $C^1B^1D^1$ с вершиной A^1 . Вот мы и получили половину октаэдра. Совпадающие вершины полуоктаэдра, обозначаемые несколькими буквами, заключаем в скобки (BA), (DA), (CD), (CB), (CBDA) и $(C^1B^1D^1A^1)$.

Заметим, что если вершина, лежащая внутри основания параллелепипеда, принадлежит 4 правильным пирамидам, то их объединение есть половина октаэдра.

Итак, внутренняя часть параллелепипеда Ω будет заполнена правильными трехгранными пирамидами и октаэдрами. На границе будут части октаэдра и правильные пирамиды. Совокупность всех пирамид есть триангуляция \mathcal{T}_h области Ω .

Пересечение треугольных пирамид T_i и T_j есть либо пустое множество, либо вершина A_m , либо сторона l_k , либо треугольник (грань), у которого вершины принадлежат множеству $\{A_j, B_k, C_q, D_r\}$ (здесь индексы могут располагаться и внизу, и вверху).

Конечным элементом, соответствующим вершине A_p , называется объединение всех пирамид, имеющих вершину A_p . Конечные элементы для внутренних узлов триангуляции будут двух типов: октаэдры с центром в A_p (см. рис. 2) имеющие 7 узлов и объединение 8 правильных пирамид по числу вершин куба и 6 полуоктаэдров по числу граней куба (см. рис. 3). Они имеют 19 узлов.

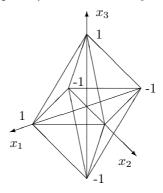


Рис. 2. Конечный элемент с 7 узлами.

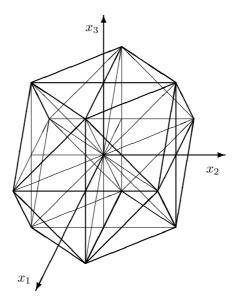


Рис. 3. Конечный элемент с 19 узлами.

Количество узлов конечного элемента определяется базисными функциями, которые равны 1 в одной из вершин пирамиды и 0 в во всех других узах триангуляции, поэтому произведение двух базисных функций отлично от нуля, если узлы, им соответствующие, принадлежат общей пирамиде.

Конечный элемент граничного узла есть пересечение соответствующего конечного элемента внутреннего узла с замыканием области Ω . Такая триангуляция сокращает число типов функций до двух. Последнее упрощает программу.

Рассмотрим пирамиду $ABDA^1$, где A — начало координат, а вершины B, D и A^1 принадлежат положительным полуосям ox_1, ox_2 и ox_3 соответственно. Каждой вершине сопоставляем базисную функцию, которая является линейной (т. е. многочленом степени не выше 1 от переменных x_1, x_2, x_3 на пирамиде) и принимает значение 1 в этой вершине (которую мы используем в качестве индекса) и 0 во всех других узлах (вершинах). Этим свойством базисная функция определяется однозначно.

Каждой пирамиде соответствуют четыре базисные функции. Приведем эти функции и их градиенты для пирамиды $ABDA^1$:

$$\begin{split} \varphi_A &= 1 - \frac{x_1}{h} - \frac{x_2}{h} - \frac{x_3}{h} \implies \nabla \varphi_A = \left\{ -\frac{1}{h}, -\frac{1}{h}, -\frac{1}{h} \right\}, \\ \varphi_{A^1} &= \frac{x_3}{h} \implies \nabla \varphi_{A^1} = \left\{ 0, 0, \frac{1}{h} \right\}, \quad \varphi_B = \frac{x_1}{h} \implies \nabla \varphi_B = \left\{ \frac{1}{h}, 0, 0 \right\}, \\ \varphi_D &= \frac{x_2}{h} \implies \nabla \varphi_D = \left\{ 0, \frac{1}{h}, 0 \right\}. \end{split}$$

Аналогично находим базисные функции и их градиенты для правильных пирамид $BCDC^1$, $BA^1B^1C^1$, $DC^1A^1D^1$.

Приведем базисные функции для пирамиды $BDA^{1}C^{1}$, а также их градиенты:

$$\begin{split} \varphi_D &= \, -\frac{x_1}{2h} + \frac{x_2}{2h} - \frac{x_3}{2h} + \frac{1}{2}, & \nabla \varphi_D &= \, \left\{ -\frac{1}{2h}, \frac{1}{2h}, -\frac{1}{2h} \right\}, \\ \varphi_B &= \frac{x_1}{2h} - \frac{x_2}{2h} - \frac{x_3}{2h} + \frac{1}{2}, & \nabla \varphi_B &= \, \left\{ \frac{1}{2h}, -\frac{1}{2h}, -\frac{1}{2h} \right\}, \\ \varphi_{C^1} &= \frac{x_1}{2h} + \frac{x_2}{2h} + \frac{x_3}{2h} - \frac{1}{2}, & \nabla \varphi_{C^1} &= \, \left\{ \frac{1}{2h}, \frac{1}{2h}, \frac{1}{2h} \right\}, \\ \varphi_{A^1} &= 1 - \frac{x_1}{2h} + \frac{x_2}{2h} - \frac{x_3}{2h}, & \nabla \varphi_{A^1} &= \, \left\{ -\frac{1}{2h}, \frac{1}{2h}, -\frac{1}{2h} \right\}. \end{split}$$

Аналогично находим базисные функции и их градиенты для куба, разрезанного вторым способом.

Нетрудно проверить, что скалярные произведения градиентов базисных функций для пирамиды $ABDA^1$ удовлетворяют равенствам

$$(\nabla \varphi_A, \nabla \varphi_A) = \frac{3}{h^2}, \quad (\nabla \varphi_A, \nabla \varphi_{A^1}) = (\nabla \varphi_A, \nabla \varphi_B) = (\nabla \varphi_A, \nabla \varphi_D) = -\frac{1}{h^2},$$
$$(\nabla \varphi_B, \nabla \varphi_B) = (\nabla \varphi_{A^1}, \nabla \varphi_{A^1}) = (\nabla \varphi_D, \nabla \varphi_D) = \frac{1}{h^2}.$$

Остальные скалярные произведения градиентов базисных функций равны нулю

$$(\nabla \varphi_B, \nabla \varphi_D) = 0 = (\nabla \varphi_B, \nabla \varphi_{A^1}) = (\nabla \varphi_{A^1}, \nabla \varphi_D).$$

Сумма всех скалярных произведений с участием одной и той же функции равна нулю.

Найдем скалярные произведения градиентов базисных функций пирамиды A^1C^1BD :

$$\begin{split} (\nabla \varphi_{A^1}, \nabla \varphi_{A^1}) &= (\nabla \varphi_B, \nabla \varphi_B) = (\nabla \varphi_{C^1}, \nabla \varphi_{C^1}) = (\nabla \varphi_D, \nabla \varphi_D) = \frac{3}{4h^2}, \\ (\nabla \varphi_{A^1}, \nabla \varphi_B) &= (\nabla \varphi_{A^1}, \nabla \varphi_D) = (\nabla \varphi_{A^1}, \nabla \varphi_{C^1}) = (\nabla \varphi_B, \nabla \varphi_{C^1}) = \\ &= (\nabla \varphi_D), (\nabla \varphi_B) = -\frac{1}{4h^2}. \end{split}$$

Аналогично определяются базисные функции и их градиенты пирамиды ACB^1D^1 . Зададим конечномерное пространство кусочно-линейных функций:

$$W_{2,h}^1(\Omega) = \{ v_h \in C(\Omega), v_h|_T \in \bar{P}_1(T) \ \forall T \in \mathcal{T}_h \},$$

здесь $\bar{P}_1(T)$ — множество полиномов степенью не выше первой на пирамиде T. Обозначим M_{Γ} множество узлов триангуляции \mathcal{T}_h , принадлежащих границе Γ , и определим $G_h = \{v_h \in W^1_{2,h}: v_h(A_j) \geqslant 0, \ \forall A_j \in M_{\Gamma}\}$. Из определения G_h следует, что оно замкнуто и выпукло. Кроме того, $G_h \subset G \ \forall h > 0$.

Представим требуемую функцию u_h в виде $u_h = \sum_{i=1}^N y_i \varphi_i(x_1, x_2, x_3)$, где φ_i — это кусочно-линейные базисные функции, определенные выше, N — число узлов триангуляции \mathcal{T}_h . Оператор $Q: \mathbb{R}^N \to W^1_{2,h}(\Omega)$ осуществляет взаимно однозначное соответ-

ствие между
$$y = (y_1, y_2, ..., y_N) \in \mathbb{R}^N$$
 и $v_h \in W^1_{2,h}(\Omega), v_h = \sum_{i=1}^N y_i \varphi_i.$

Определим множество $K \subset \mathbb{R}^N = Q^{-1}(G_h)$. Если условие (5) выполнено, то из включений $G_h \subset G$ и $W^1_{2,h}(\Omega) \subset W^1_2(\Omega)$ следует, что решение y^* существует и единственно. Множество K есть декартово произведение $K = K^1 \times K^2 \times ..., \times K^N$, где $K^i = [0, \infty)$, если узел $A_i \in M_{\Gamma}$, и $K^i = \mathbb{R}$, если узел A_i внутренний.

Стандартными преобразованиями сведем задачу (3)-(4) к конечномерной задаче

$$J_1(y) = \langle Ay, y \rangle - \langle P, y \rangle$$
 – min для $y \in K$, (7)

где $\langle\cdot,\cdot\rangle$ — скалярное произведение в \mathbb{R}^N , матрица A соответствует форме $\int\limits_{\Omega}|\nabla u|^2d\Omega$, вектор $P=(p_1,p_2,\ldots,p_N)$ — линейной форме $\int\limits_{\Omega}fud\Omega$. Диагональные элементы a_{ii} матрицы A положительны, так как $a_{ii}=\int\limits_{\Omega}|\nabla\varphi_i|^2d\Omega>0$.

В монографии [3] решение задачи (7) найдено методом верхней релаксации с проектированием, когда матрица A строго положительно определена и симметрична. Здесь ситуация другая, матрица A — вырожденная (положительно определена на подпространстве конечной коразмерности).

В настоящей работе мы также будем применять метод верхней релаксации с проектированием, только модифицированный. В отличие от классического метода, где используется положительность всех собственных значений матрицы A, мы будем учитывать положительность всех ее диагональных элементов.

Применим метод верхней релаксации с проекцией [3]. Задаем произвольный элемент $y^n \in K$, затем уточняем координаты y^n по схеме: вычисляем промежуточное значение координаты $y_i^{n+1/2}$ по формуле (7)

$$y_i^{n+1/2} = -\frac{1}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij} y_j^{n+1} + \sum_{j=i+1}^{N} a_{ij} y_j^n - p_i \right)$$

(эта формула решает задачу минимизации функционала $J_1(y)$ по y_i на множестве K^i), и находим

$$y_i^{n+1} = P_{K^i}(\omega y_i^{n+1/2} + (1 - \omega) y_i^n),$$

где P_{K^i} — оператор проектирования R^i на K^i . В нашем конкретном случае имеем $P_{K^i}(y_i^{n+1}) = \max\{0, y_i^{n+1/2}\}$, если $i \in M_\Gamma$, и $P_{K^i}(y_i^{n+1/2}) = 0$, если $y_i^{n+1/2} \leqslant 0$ для $i \in M_\Gamma$, и равен $P_{K^i}(y_i^{n+1}) = y_i^{n+1/2}$ для $i \notin M_\Gamma$. Выбираем параметр $\omega \in (0,2)$ так, чтобы увеличить скорость сходимости.

Теорема 1. Пусть выполнено условие (5). Тогда последовательность $\{y^n\}$, полученная методом релаксации с проекцией, сходится к решению y^* задачи (7).

Доказательство. Далее, для простоты, мы пишем J вместо J_1 . Достаточно доказать, что

$$J(y^n) - J(y^{n+1}) \geqslant \frac{1}{2} \left(\frac{2 - \omega}{\omega} \right) \sum_{i=1}^{N} a_{ii} |y_i^{n+1} - y_i^n|^2$$
 (8)

для i=1,2,...,N, поскольку из (8) следует убывание последовательности. Обозначим $\delta=\min\{a_{ii}\}$, тогда, суммируя по i от 1 до N, будем иметь

$$J(y^n) - J(y^{n+1}) \geqslant \frac{1}{2} \left(\frac{2 - \omega}{\omega} \right) \delta \|y_i^{n+1} - y_i^n\|_{R^N}^2.$$
 (9)

Воспользовались равенством $\|y^{n+1} - y^n\|_{R^N}^2 = \sum_{i=1}^N |y_i^{n+1} - y_i^n|^2$.

Обозначим

$$\begin{split} {}^iy^{n+1} &= (y_1^{n+1}, \dots, y_i^{n+1}, y_{i+1}^n, \dots, y_N^n), \\ {}^iy^{n+1/2} &= (y_1^{n+1/2}, \dots, y_i^{n+1/2}, y_{i+1}^n, \dots, y_N^n), \\ {}^0y^{n+1} &= y^n. \end{split}$$

Для i=1 имеем

$$J(^{i-1}y^n) - J(^1y^{n+1}) = \frac{1}{2}a_{11}(y_1^n)^2 + \sum_{j=2}^N a_{1j}y_1^n y_j^n - p_1y_i^n - \frac{1}{2}a_{11}(y_1^{n+1})^2 - \sum_{j=2}^N a_{1j}y_1^{n+1}y_j^n + p_1y_1^{n+1} =$$

$$= \frac{1}{2}a_{11}\left((y_1^n)^2 - (y_1^{n+1})^2)\right) + \left(\sum_{j=2}^N a_{1j}y_j^n\right)(y_1^n - y_1^{n+1}) - p_1(y_1^n - y_1^{n+1}) =$$

$$= \frac{1}{2}a_{11}((y_1^n)^2 - (y_1^{n+1})^2) - a_{11}y_1^{n+1/2}(y_1^n - y_1^{n+1}) =$$

$$= a_{11}\left(-\frac{1}{2}(y_1^{n+1} - y_1^n)^2 + (y_1^n - y_1^{n+1})(y_1^n - y_1^{n+1/2})\right).$$

Из равенства $y_1^{n+1} = P_{K^1}\left((1-\omega)y_1^n + \omega y_1^{n+1/2}\right)$ следует неравенство (оператор про-ектирования P_{K^1} линеен, не увеличивает расстояние т. к. его норма равна 1)

$$(y_1^n-y_1^{n+1})\left((1-\omega)y_1^n+\omega y_1^{n+1/2}-y_1^{n+1}\right)\leqslant 0,$$

откуда

$$(y_1^n - y_1^{n+1})((y_1^n - y_1^{n+1}) - \omega(y_1^n - y_1^{n+1/2})) \le 0.$$

Последнее влечет за собой неравенство $(y_1^n-y_1^{n+1})(y_1^n-y_1^{n+1/2})\geqslant \frac{1}{\omega}(u_1^{n+1}-y_1^n)^2$. Таким образом,

$$J({}^{0}y_{1}^{n+1}) - J({}^{1}y_{1}^{n+1}) \ge a_{11} \left(-\frac{1}{2} \left(y_{1}^{n+1} - y_{1}^{n} \right)^{2} + \frac{1}{\omega} \left(y_{1}^{n+1} - y_{1}^{n} \right)^{2} \right) =$$

$$= \frac{1}{2} \left(\frac{2 - \omega}{\omega} \right) \left(y_{1}^{n+1} - y_{1}^{n} \right)^{2}.$$

Доказательство для i=2,...,N аналогично представленному.

Последовательность $\{J(y^n)\}$ убывает и ограниченна $J(y^*)$, потому сходится и, следовательно, ограничена. Последовательность $\{y^n\}$ ограничена, поэтому компактна. Пусть $\tilde{y}=\lim_{k\to\infty}y^{n_k}$ ($\{y^{n_k}\}$ — сходящаяся подпоследовательность последовательности $\{y^n\}$). Если $J(\tilde{y})=J(y^*)$, то \tilde{y} — решение, и в силу единственности решения $\tilde{y}=y^*$. Пусть, напротив, $J(\tilde{y})>J(y^*)$. Из того, что матрица A полуположительно определена в \mathbb{R}^N , следует, что квадратичная функция выпуклая, поэтому имеем

$$\langle \nabla J(\tilde{y}), (y^* - \tilde{y}) \rangle_{R^N} \leqslant J(y^*) - J(\tilde{y}) < 0.$$

Следовательно, существует такое y_i , что

$$\frac{\partial J(\tilde{y})}{\partial y_i}(y_j^* - \tilde{y}_j) < 0.$$

Легко видеть, что $\tilde{y}_j + \lambda(y_j^* - \tilde{y}_j) \in K^j$, $0 \le \lambda \le 1$. Определим

$$\frac{\partial J(\tilde{y})}{\partial y_j} = \mu \neq 0, \qquad y_j^* - \tilde{y}_j = \beta \neq 0.$$

Положим для определенности $\mu>0$, тогда $\beta<0$, так как $y_j^*<\tilde{y}_j$. Возьмем r>0 такое, чтобы $r>-\beta$, тогда для всех $y\in B_r(\tilde{y})=\{z:\|z-\tilde{y}\|\leqslant r\}$ справедливо неравенство $\frac{\partial J(y)}{\partial y_i}<\frac{\mu}{2}$.

Пусть $y^{n_k} \in B_{r/4}(\tilde{y})$ для достаточно большого числа n_k , тогда из (9) выполняется неравенство

 $||y^{n_k+1}-y^{n_k}||<\frac{r}{4},$

из которого следует, что

$$||j^{-1}y^{n_k+1} - y^{n_k}|| < \frac{r}{4}.$$

Следовательно,

$$||j^{-1}y^{n_k+1} - \tilde{y}^{n_k}|| \le ||j^{-1}y^{n_k+1} - y^{n_k}|| + ||y^{n_k} - \tilde{y}|| < \frac{r}{4} + \frac{r}{4} = \frac{r}{2}.$$

В этом случае $^{j-1}y^{n_k+1}-(r/2)\varphi_j\in B_r(\tilde{y})$, где φ_j — базисный вектор, соответствующий узлу j. Пусть $y_j^{n_k+1/2}$ — решение неравенства [3]

$$\begin{split} &J(y_j^{n_k+1/2},\dots,y_j^{n_k+1/2},y_{j+1}^{n_k},\dots,y_N^{n_k}\leqslant\\ &\leqslant J(y_j^{n_k+1/2},\dots,y_{j-1}^{n_k+1/2},v,y_{j+1}^{n_k},\dots,y_N^{n_k})\quad\text{для}\quad\forall v\in R^j. \end{split}$$

Тогда

$$J(^{j}y^{n_{k}+1/2}) - J(^{j-1}y^{n_{k}+1}) \leqslant J(^{j-1}y^{n_{k}+1} - \frac{r}{2}\varphi_{j}) - J(^{j-1}y^{n_{k}+1}) \leqslant$$
$$\leqslant -\frac{\partial J}{\partial y_{j}}(^{j-1}y^{n_{k}+1} - \frac{r}{2}\varphi_{j}) < -\frac{\mu}{2} \cdot \frac{r}{2} = -\frac{\mu r}{4}.$$

Следовательно, $y_j^{n_k+1/2}-y_j^{n_k}\leqslant -\frac{r}{2}$ и

$$(1 - \omega)\varphi_j^{n_k} + \omega y_j^{n_k + 1/2} - y_j^{n_k} = \omega(y_j^{n_k + 1/2} - y_j^{n_k}) \leqslant -\frac{\omega r}{2}.$$

Если $(1-\omega)y_j^{n_k}+\omega y_j^{n_k+1/2}\in K^j$, тогда $y_j^{n_k+1}=(1-\omega)y_j^{n_k}+\omega y_j^{n_k+1/2}$ и, следовательно, $y_j^{n_k+1}-y_j^{n_k}\leqslant -\frac{\omega r}{2}$. Если узел j лежит на границе Γ , значит, $y_j^{n_k+1}=0$. Тогда $y_j^{n_k+1}-y_j^{n_k}=-y_j^{n_k}$. Имеем $y_j^{n_k}\geqslant y_j^*+(-\beta-r/4)\geqslant -\beta-\frac{r}{4}<0$. Это согласуется с выбором r. Поэтому $y_j^{n_k+1/2}-y_j^{n_k}\leqslant \beta+\frac{r}{4}<0$. Следовательно,

$$y_j^{n_k+1/2} - y_j^{n_k} \le \max\{-(r\omega/2), \beta + r/4\} < 0$$

для достаточно больших n_k вопреки (9).

Случай μ < 0 исследуется аналогично. Поэтому $J(y^*) = J(\tilde{y})$, и $y^* = \tilde{y}$ в силу единственности решения.

3. Численное решение задачи

Численное решение задачи проводилось для области Ω , представляющей собой прямоугольный параллелепипед со сторонами a=1, b=2 и c=1. Функция $\psi=0$ на границе Γ , f=-19 на кубе $\Omega_1=[1/4,3/4]\times[1/4,3/4]\times[1/4,3/4]$ и f=1 на дополнении к Ω_1 . Эти значения выбраны так, чтобы условие (5) выполнялось. Стартовое значение есть $y^0=[0,0,...,0]$. Параметр релаксации $\omega=1.75$ его подобрали экспериментально, чтобы ускорить сходимость. Решение на нижнем основании параллелепипеда изображено на рис. 4.

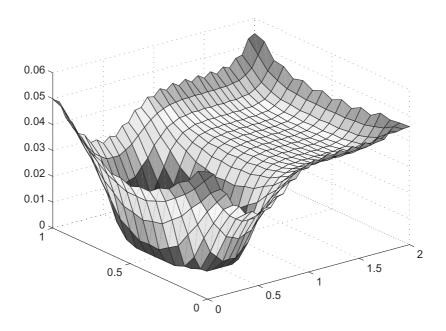


Рис. 4. Значения приближенного решения u_h^* на нижнем основании Ω .

Задача решалась на последовательности триангуляций с параметром $h=2^{-k},$ k=2,3,4,5,6. Все узлы следующей триангуляции, как того требует метод, содержат все узлы предыдущей триангуляции. Значения решения при переходе к новому значению параметра h на новых узлах триангуляции определялись по линейности. Число итераций и условия останова приведены в таблице 1.

Таблица 1. $\gamma(n)$ — условия останова для итераций, k(n) — число итераций.

h_n	1/4	1/8	1/16)	1/32)	1/64
$\gamma(n)$	0.1	0.05	0.01	0.0005	0.0001
k(n)	11	24	37	69	123

Хотя алгоритм не допускает распараллеливания, расчеты выполнены за счет ресурсов Центра коллективного пользования научным оборудованием "Центр обработки и хранения научных данных ДВО РАН". Выражаю благодарность коллективу Вычислительного центра Дальневосточного отделения Российской академии наук.

Список литературы

- [1] Г. Дюво, Ж.-Л. Лионс, Неравенства в механике и физике, Наука, М., 1980.
- [2] Г. Фикера, Теоремы существования в теории упругости, Наука, М., 1989.
- [3] Р. Гловински, Ж.-Л. Лионс, Н. Тремольер, Численное исследование вариационных неравенств, Мир, М., 1979.
- [4] Г.И. Марчук, Ю.М. Агошков, *Введение в проекционно-сеточные методы*, Наука, М., 1975.
- [5] М. Мину, Математическое программирование, Наука, М., 1990.
- [6] С. Г. Михлин, Линейные уравнения в частных производных, Высш. школа, М., 1977.

Поступила в редакцию

21 сентября 2021 г.

Zolotukhin A. Y.¹ Approximate solution of the Signorini problem by the finite element method in three-dimensional space. Far Eastern Mathematical Journal. 2021. V. 21. No 2. P. 203–214.

ABSTRACT

The finite element method is usually used for two-dimensional space. The paper investigates the finite element method for solving the Signorini problem in three-dimensional space.

Key words: the finite element method, Signorini problem.

¹ Tula State University, Russia

References

- [1] G. Diuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980.
- [2] G. Fikera, Teoremy sushchestvovaniia v teorii uprugosti, Nauka, M., 1989.
- [3] R. Glovinski, Zh.-L. Lions, H. Tremol'er, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979.
- [4] G. I. Marchuk, Iu. M. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1975.
- [5] M. Minu, Matematicheskoe programmirovanie, Nauka, M., 1990.
- [6] S. G. Mikhlin, Lineinye uravneniia v chastnykh proizvodnykh, Vyssh. shkola, M., 1977.