УДК 517.5 MSC2020 42A10, 41A17, 41A44

© М. Р. Лангаршоев¹

О точных значениях поперечников некоторых классов функций из L_2

В работе получены точные неравенства типа Джексона—Стечкина между наилучшими приближениями периодических дифференцируемых функций тригонометрическими полиномами и обобщенными модулями непрерывности m-го порядка в пространстве L_2 . Вычислены точные значения различных n-поперечников классов функций из L_2 , задаваемых модулями непрерывности r-й производной функции f.

Ключевые слова: наилучшее приближение, тригонометрический полином, обобщенный модуль непрерывности высшего порядка, п-поперечники.

DOI: https://doi.org/10.47910/FEMJ202006

Введение

Пусть \mathbb{N} — множество натуральных чисел; $\mathbb{Z}_+ := \mathbb{N} \cup \{0\}$, $\mathbb{R}_+ = [0, +\infty)$ — множество положительных чисел. Рассмотрим пространство $L_2 := L_2[0, 2\pi]$ 2π -периодических суммируемых с квадратом в смысле Лебега действительных функций f(x) с конечной нормой

$$||f||: = ||f||_{L_2} = \left(\frac{1}{\pi} \int_{0}^{2\pi} |f(x)|^2 dx\right)^{1/2} < \infty.$$

Через $L_2^{(r)} (r \in \mathbb{Z}_+; L_2^0 \equiv L_2)$ обозначим множество 2π -периодических функций $f \in L_2$, у которых производные (r-1)-го порядка абсолютно непрерывны, а производные r-го порядка $f^{(r)} \neq const$ принадлежат пространству L_2 . Символом \mathcal{T}_{n-1} обозначим подпространство всевозможных тригонометрических полиномов порядка $\leqslant n-1$:

$$\mathcal{T}_{n-1}$$
: = $\left\{ T_{n-1}(x) : T_{n-1}(x) = \frac{\alpha_0}{2} + \sum_{k=1}^{n-1} (\alpha_k \cos kx + \beta_k \sin kx) \right\}$.

¹ Подмосковный колледж энергия, 142450, Московская область, Богородский городской округ, г. Старая Купавна, Большая Московская улица, 190 Электронная почта: mukhtor77@mail.ru

Общеизвестно, что для произвольной функции $f(x) \in L_2$ имеющей формальное разложение в ряд Фурье

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx),$$

величина ее наилучшего приближения в метрике L_2 подпространством \mathcal{T}_{n-1} равна

$$E_{n-1}(f) \stackrel{def}{=} \inf \left\{ \|f - T_{n-1}\| : T_{n-1}(x) \in \mathcal{T}_{n-1} \right\} = \|f - S_{n-1}(f)\| = \left\{ \sum_{k=n}^{\infty} \rho_k^2 \right\}^{1/2}, \quad (1)$$

где

$$S_{n-1}(f;x) = \frac{a_0}{2} + \sum_{k=1}^{n-1} (a_k \cos kx + b_k \sin kx)$$

— частная сумма порядка n-1 ряда Фурье функции f(x), а $\rho_k^2 \stackrel{def}{=} a_k^2 + b_k^2$. Равенством

$$\omega_m(f,t)_2 = \sup \{ \|\Delta_h^m f(\cdot)\|_2 : |h| \le t \},$$

где

$$\Delta_h^m f(x) = \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} f(x+kh)$$

разность m-го порядка функции $f \in L_2$ с шагом h, определим модуль непрерывности порядка m, а равенством

$$\Omega_m(f,t)_2 = \left\{ \frac{1}{t^m} \int_0^t \cdots \int_0^t \|\Delta_{\overline{h}}^m f(\cdot)\|^2 dh_1 \cdots dh_m \right\}^{1/2},$$

где $t>0, \quad \overline{h}=(h_1,h_2,\cdots,h_m), \Delta_{\overline{h}}^m=\Delta_{h_1}^1\circ\cdots\circ\Delta_{h_m}^1$ будем определять так называемый обобщенный модуль непрерывности m-го порядка функции $f\in L_2$ (см., например [1,2]).

При решении задачи вычисления точных констант в неравенствах типа Джексона – Стечкина

 $E_{n-1}(f) \leqslant \chi n^{-r} \omega_m \left(f^{(r)}, \frac{t}{n} \right); \quad r \in \mathbb{Z}_+, t > 0$

вместо обычного модуля непрерывности $\omega_m(f,t)$ иногда удобнее использовать обобщенный модуль непрерывности $\Omega_m(f,t)$. Интересные результаты при этом были получены в работах [3–8].

В настоящей работе для любого $m,n \in \mathbb{N}, r \in \mathbb{Z}_+$ и h > 0 рассмотрим следующую аппроксимационную характеристику:

$$\mathcal{X}_{m,n,r}(h) = \sup_{\substack{f \in L_2^{(r)} \\ f^{(r)} \neq const}} \frac{E_{n-1}^2(f)}{\left[\Omega_m^{2/m} \left(f^{(r)}, h\right) + \frac{n^2}{h} \int_0^h u(h-u) \Omega_m^{2/m} \left(f^{(r)}, u\right) du\right]^{m/2}}.$$
 (2)

Отметим, что аппроксимационная характеристика (2), в отличие от других ранее рассмотренных экстремальных характеристик, содержит обобщенный модуль непрерывности не только под знаком интеграла, но также и вне интеграла.

Пусть S — единичный шар в L_2 ; \mathcal{W} — выпуклое центрально-симметричное подмножество из L_2 ; $\Lambda_n \subset L_2$ — n-мерное подпространство; $\Lambda^n \subset L_2$ — подпространство коразмерности n; $\mathcal{L}\colon L_2 \to \Lambda_n$ — непрерывный линейный оператор, переводящий элементы пространства L_2 в Λ_n ; $\mathcal{L}^\perp \colon L_2 \to \Lambda_n$ — непрерывный оператор линейного проектирования пространства L_2 на подпространства Λ_n .

Величины

$$b_{n}(\mathcal{W}, L_{2}) = \sup \left\{ \sup \left\{ \varepsilon > 0; \ \varepsilon S \cap \Lambda_{n+1} \subset \mathcal{W} \right\} : \Lambda_{n+1} \subset L_{2} \right\},$$

$$d^{n}(\mathcal{W}, L_{2}) = \inf \left\{ \sup \left\{ \|f\|_{2} : f \in \mathcal{W} \cap \Lambda^{n} \right\} : \Lambda^{n} \subset L_{2} \right\},$$

$$d_{n}(\mathcal{W}, L_{2}) = \inf \left\{ \sup \left\{ \inf \left\{ \|f - g\|_{2} : g \in \Lambda_{n} \right\} : f \in \mathcal{W} \right\} : \Lambda_{n} \subset L_{2} \right\},$$

$$\delta_{n}(\mathcal{W}, L_{2}) = \inf \left\{ \inf \left\{ \sup \left\{ \|f - \mathcal{L}f\|_{2} : f \in \mathcal{W} \right\} : \mathcal{L}L_{2} \subset \Lambda_{n} \right\} : \Lambda_{n} \subset L_{2} \right\},$$

$$\pi_{n}(\mathcal{W}, L_{2}) = \inf \left\{ \inf \left\{ \sup \left\{ \|f - \mathcal{L}^{\perp}f\|_{2} : f \in \mathcal{W} \right\} : \mathcal{L}^{\perp}L_{2} \subset \Lambda_{n} \right\} : \Lambda_{n} \subset L_{2} \right\},$$

называют соответственно бернштейновским, гельфандовским, колмогоровским, линейным и проекционным n-поперечниками.

Указанные n-поперечники связаны соотношениями (см. например, [10,11]):

$$b_n(\mathcal{W}, L_2) \leqslant d^n(\mathcal{W}, L_2) \leqslant d_n(\mathcal{W}, L_2) = \delta_n(\mathcal{W}, L_2) = \pi_n(\mathcal{W}, L_2). \tag{3}$$

Полагаем также

$$E_{n-1}(\mathcal{W}) := \sup \{E_{n-1}(f) : f \in \mathcal{W}\}.$$

Пусть $\Psi(t),\ (0\leqslant t<\infty)$ — непрерывная неубывающая функция такая, что $\Psi(0)=0$. Будем называть ее мажорантой. Символами $W_m^{(r)}(h)$ и $W_m^{(r)}(\Psi),\ m\in\mathbb{N}$ $r\in\mathbb{Z}_+$ соответственно обозначим класс функций $f\in L_2^{(r)},\$ для которых при любом h>0 имеют место неравенства

$$\frac{1}{h^2} \Omega_m^{2/m} \left(f^{(r)}, h \right) + \frac{n^2}{h^3} \int_0^h u(h - u) \Omega_m^{2/m} \left(f^{(r)}, u \right) du \leqslant 1,$$

$$\left(h \Omega_m^{2/m} \left(f^{(r)}, h \right) + \frac{\pi^3}{nh^3} \int_0^h u(h - u) \Omega_m^{2/m} \left(f^{(r)}, u \right) du \right)^{m/2} \leqslant \Psi(h).$$

Введем следующее обозначение:

$$\left(1 - \frac{\sin t}{t}\right)_* := \begin{cases}
1 - \frac{\sin t}{t}, & \text{если } 0 < t \leqslant t_*, \\
1 - \frac{\sin t_*}{t_*}, & \text{если } t_* \leqslant t < \infty,
\end{cases}$$
(4)

где в (4) t_* — величина аргумента, при котором функция $\frac{\sin t}{t}$ на \mathbb{R}_+ принимает свое наименьшее значение. При этом t_* — минимальный положительный корень уравнения $t=\operatorname{tg} t(4,49 < t_* < 4,51)$ (см. [7]).

1. Основные результаты

Теорема 1. Пусть $m, n \in \mathbb{N}, \ r \in \mathbb{Z}_+$ и n > r. Тогда для любого h удовлетворяющего условию $0 < h \leqslant \pi/n$ выполняется равенство

$$\sup_{\substack{f \in L_2^{(r)} \\ f^{(r)} \neq const}} \frac{E_{n-1}(f)}{\left[\Omega_m^{2/m} \left(f^{(r)}, h\right) + \frac{n^2}{h} \int_0^h u(h-u) \Omega_m^{2/m} \left(f^{(r)}, u\right) du\right]^{m/2}} = \left(\frac{hn^{1+r/m}}{\sqrt{3}}\right)^{-m}. (5)$$

Доказательство. Известно, что если функция $f \in L_2^{(r)}$ и

$$f(x) \sim \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} (\alpha_k \cos kx + \beta_k \sin kx)$$

— ряд Фурье функции f(x), то (см. [3])

$$\Omega_m^2 \left(f^{(r)}, t \right) \geqslant 2^m \sum_{k=n}^{\infty} k^{2r} \rho_k^2 \left(1 - \frac{\sin kt}{kt} \right)^m. \tag{6}$$

Для произвольной функции $f \in L_2^{(r)}$ и любых $m,n \in \mathbb{N}$ справедливо неравенство (см. [6])

$$E_{n-1}^{2}(f) \leqslant \sum_{k=n}^{\infty} \rho_{k}^{2} \frac{\sin kt}{kt} + \left(E_{n-1}^{2}(f)\right)^{1-1/m} \cdot \frac{1}{2n^{2r/m}} \cdot \Omega_{m}^{2/m} \left(f^{(r)}; t\right). \tag{7}$$

Умножая обе части неравенства (7) на t, а затем интегрируем её по t в пределах от 0 до u. В итоге получим

$$\frac{u^2}{2}E_{n-1}^2(f) \leqslant \sum_{k=n}^{\infty} \rho_k^2 \frac{1 - \cos ku}{k^2} + E_{n-1}^{2-2/m}(f) \cdot \frac{1}{2n^{2r/m}} \int_0^u t\Omega_m^{2/m} \left(f^{(r)}, t\right) dt. \tag{8}$$

Теперь интегрируем неравенство (8) по переменной u в пределах от 0 до h, а потом разделяем обе части на h

$$\frac{h^2}{6}E_{n-1}^2(f) \leqslant \sum_{k=n}^{\infty} \rho_k^2 \frac{kh - \sin kh}{k^3 h} + E_{n-1}^{2-2/m}(f) \cdot \frac{1}{2n^{2r/m}h} \int_0^h \int_0^u t\Omega_m^{2/m} \left(f^{(r)}, t\right) dt du. \tag{9}$$

Используя неравенство Гёльдера, преобразуем первое слагаемое в правой части неравенства (9) и применяя формулы (6), получим

$$\begin{split} \sum_{k = n}^{\infty} \rho_k^2 \frac{kh - \sin kh}{k^3 h} &= \sum_{k = n}^{\infty} \frac{1}{k^2} \rho_k^{2-2/m} \rho_k^{2/m} \left(1 - \frac{\sin kh}{kh}\right) \leqslant \\ &\leqslant \left(\sum_{k = n}^{\infty} \rho_k^2\right)^{1 - 1/m} \cdot \left(\sum_{k = n}^{\infty} \frac{1}{k^{2m}} \rho_k^2 \left(1 - \frac{\sin kh}{kh}\right)^m\right)^{1/m} \leqslant E_{n - 1}^{2 - 2/m} (f) \frac{1}{2n^{2 + 2r/m}} \Omega_m^{2/m} \left(f^{(r)}, h\right). \end{split}$$

Во втором слагаемом в неравенстве (9) преобразуем двойной интеграл, применяя при этом метод интегрирования по частям

$$\int_{0}^{h} \int_{0}^{u} t\Omega_{m}^{2/m} \left(f^{(r)}, t \right) dt du = \int_{0}^{h} u(h-u)\Omega_{m}^{2/m} \left(f^{(r)}, u \right) du.$$

Следовательно, неравенство (9) принимает вид

$$\frac{h^2}{3}E_{n-1}^{2/m}(f) \leqslant \frac{1}{n^{2+2r/m}} \left(\Omega_m^{2/m} \left(f^{(r)}, h \right) + \frac{n^2}{h} \int_0^h u(h-u) \Omega_m^{2/m} \left(f^{(r)}, u \right) du \right). \tag{10}$$

Из (10) следует неравенство

$$\sup_{\substack{f \in L_2^{(r)} \\ f^{(r)} \neq const}} \frac{E_{n-1}(f)}{\left[\Omega_m^{2/m} \left(f^{(r)}, h\right) + \frac{n^2}{h} \int_0^h u(h-u) \Omega_m^{2/m} \left(f^{(r)}, u\right) du\right]^{m/2}} \leqslant \left(\frac{hn^{1+r/m}}{\sqrt{3}}\right)^{-m}.$$
(11)

Таким образом, оценка сверху в соотношении (5) получена. Чтобы получить оценки снизу величины, стоящей в левой части неравенства (11), вводим в рассмотрение функцию $f_0(x) = \cos nx$. Для этой функции $E_{n-1}(f_0) = 1$, и согласно формуле (6) из работы [3]

 $\Omega_m^2 \left(f_0^{(r)}; h \right) = 2^m n^{2r} \left(1 - \frac{\sin nh}{nh} \right)^m, \quad 0 < h \leqslant \pi/n.$

Следовательно,

$$\sup_{\substack{f \in L_{2}^{(r)} \\ f^{(r)} \neq const}} \frac{E_{n-1}(f)}{\left[\Omega_{m}^{2/m} \left(f^{(r)}, h\right) + \frac{n^{2}}{h} \int_{0}^{h} u(h-u)\Omega_{m}^{2/m} \left(f^{(r)}, u\right) du\right]^{m/2}} \geqslant$$

$$\geqslant \frac{E_{n-1}(f_{0})}{\left[\Omega_{m}^{2/m} \left(f_{0}^{(r)}, h\right) + \frac{n^{2}}{h} \int_{0}^{h} u(h-u)\Omega_{m}^{2/m} \left(f_{0}^{(r)}, u\right) du\right]^{m/2}} = \left(\frac{hn^{1+r/m}}{\sqrt{3}}\right)^{-m}.$$
(12)

Сопоставляя неравенства (11) и (12), получаем утверждение теоремы 1. \Box Следует отметить, что экстремальная характеристика типа (2) для обычного модуля непрерывности $\omega_m(f^{(r)},u)$ была рассмотрена в работе [9].

Следствие 1. Для любых чисел h, удовлетворяющих условию $0 < h \leqslant \pi/n$, выполняются неравенства

$$\frac{1}{2^m n^{2r}} \leqslant \sup_{\substack{f \in L_2^{(r)} \\ f^{(r)} \neq const}} \frac{E_{n-1}^2(f)}{\Omega_m^2 \left(f^{(r)}, h\right)} \leqslant \frac{1}{n^{2r}} \left\{ \frac{3}{(nh)^2} + \frac{1}{2} \right\}^m. \tag{13}$$

Доказательство. Из неравенства (10) получаем

$$\frac{h^{2m}}{3^m} E_{n-1}^2(f) \leqslant \frac{1}{n^{2(m+r)}} \Omega_m^2 \left(f^{(r)}, h \right) \left\{ 1 + \frac{n^2 h^2}{6} \right\}^m,$$

$$\sup_{f \in L_2^{(r)}} \frac{E_{n-1}^2(f)}{\Omega_m^2 \left(f^{(r)}, h \right)} \leqslant \frac{1}{n^{2r}} \left\{ \frac{3}{(nh)^2} + \frac{1}{2} \right\}^m.$$
(14)

или

Оценка сверху получена. Для получения оценки снизу, как уже выше отметили, при $0 < h \le \pi/n$ рассмотрим функцию $f_0(x) = \cos nx$. Следовательно,

$$\sup_{\substack{f \in L_2^{(r)} \\ f^{(r)} \neq \text{ const.}}} \frac{E_{n-1}^2(f_0)}{\Omega_m^2 \left(f_0^{(r)}, h\right)} \geqslant \frac{1}{2^m n^{2r}}.$$
 (15)

Из неравенства (14) и (15) следует двойное неравенство (13).

При $h = \pi/n$ из неравенства (13) вытекает следующая оценка

$$\frac{1}{2^{m/2}} \leqslant \sup_{\substack{f \in L_2^{(r)} \\ f^{(r)} \neq const}} \frac{n^r E_{n-1}(f)}{\Omega_m \left(f^{(r)}, \frac{\pi}{n} \right)} \leqslant \frac{1}{2^{m/2}} \left\{ \frac{6 + \pi^2}{\pi^2} \right\}^{m/2}.$$

Теорема 2. При любых $m, n, r \in \mathbb{N}, r \geqslant m$ справедливы равенства

$$p_{2n}\left(W_m^{(r)}(h); L_2\right) = p_{2n-1}\left(W_m^{(r)}(h); L_2\right) = E_{n-1}\left(W_m^{(r)}(h)\right)_{L_2} = \frac{3^{m/2}}{n^{m+r}},$$

где $p_n(\cdot)$ — любой из n-поперечников $b_n(\cdot),\, d^n(\cdot),\, d_n(\cdot),\, \delta_n(\cdot),\,$ или $\pi_n(\cdot).$

Доказательство. Используя определение класса $W_m^{(r)}(h)$, с учетом соотношений (3), из неравенства (11) получаем оценку сверху

$$p_{2n}\left(W_m^{(r)}(h); L_2\right) \leqslant p_{2n-1}\left(W_m^{(r)}(h); L_2\right) \leqslant$$

$$\leqslant d_{2n-1}\left(W_m^{(r)}(h); L_2\right) \leqslant E_{n-1}\left(W_m^{(r)}(h)\right)_{L_2} \leqslant \frac{3^{m/2}}{n^{m+r}}.$$
(16)

Для получения оценки снизу бернштейновского поперечника $b_{2n}\left(W_m^{(r)}(h);L_2\right)$ рассмотрим (2n+1)-мерный шар полиномов $S_{2n+1}\in L_2$

$$S_{2n+1} = \left\{ T_n(x) \in \mathcal{T}_n : \|T_n\| \leqslant \frac{3^{m/2}}{n^{m+r}} \right\}$$

и покажем, что $S_{2n+1} \subset W_m^{(r)}(h)$. Для этого требуется доказать, что для произвольного тригонометрического полинома $T_n \in S_{2n+1}$ выполняется неравенство

$$\frac{1}{h^2} \Omega_m^{2/m} \left(T_n^{(r)}, h \right) + \frac{n^2}{h^3} \int_0^h u(h-u) \Omega_m^{2/m} \left(T_n^{(r)}, u \right) du \leqslant 1.$$

Воспользуемся неравенством [3]

$$\Omega_m^{2/m}(T_n^{(r)}; u) \le 2n^{2r/m} \left(1 - \frac{\sin nu}{nu}\right)_* ||T_n||^{2/m},$$
(17)

справедливым для любого $T_n(x) \in \mathcal{T}_{n-1}$. Тогда

$$\frac{1}{h^2} \Omega_m^{2/m} \left(T_n^{(r)}, h \right) + \frac{n^2}{h^3} \int_0^h u(h - u) \Omega_m^{2/m} \left(T_n^{(r)}, u \right) du \leqslant
\leqslant \left\{ \frac{2n^{2r/m}}{h^2} \left(1 - \frac{\sin nh}{nh} \right) + \frac{2n^{2+2r/m}}{h^3} \left(\frac{h^3}{6} - \frac{h}{n^2} + \frac{1}{n^3} \sin nh \right) \right\} ||T_n||^{2/m} \leqslant 1,$$

а потому $S_{2n+1} \subset W_m^{(r)}(h)$. По теореме В. М. Тихомирова [10] о поперечнике шара

$$p_{2n-1}\left(W_m^{(r)}(h); L_2\right) \geqslant p_{2n}\left(W_m^{(r)}(h); L_2\right) \geqslant \\ \geqslant b_{2n}\left(W_m^{(r)}(h); L_2\right) \geqslant b_{2n}\left(S_{2n+1}; L_2\right) = \frac{3^{m/2}}{n^{m+r}}.$$
(18)

Учитывая соотношения (3) и сопоставляя неравенства (16) и (18), завершаем доказательство теоремы 2. $\hfill\Box$

Теорема 3. Если мажоранта $\Psi(h)$ при любом $0 < h \leqslant \pi/n$ удовлетворяет ограничению

$$\frac{\Psi(h)}{\Psi(\pi/n)} \geqslant \left(1 + \frac{6nh}{\pi^3}\right)^{m/2} \left(1 - \frac{\sin nh}{nh}\right)_*^{m/2},\tag{19}$$

то для любых $m, n \in \mathbb{N}, r \in \mathbb{Z}_+$ выполняются равенства

$$\gamma_{2n} \Big(W_m^{(r)}(\Psi); L_2 \Big) = \gamma_{2n-1} \Big(W_m^{(r)}(\Psi); L_2 \Big) =
= E_{n-1} \Big(W_m^{(r)}(\Psi) \Big)_{L_2} = \frac{3^{m/2}}{n^{r-m/2} \pi^{3m/2}} \Psi\left(\frac{\pi}{n}\right),$$
(20)

где $\gamma_n(\cdot)$ — любой из вышеперечисленных n-поперечников.

Доказательство. Будем использовать неравенство (10). Запишем его в виде

$$E_{n-1}(f) \leqslant \frac{3^{m/2}}{n^{m+r}} \cdot \frac{1}{h^{3m/2}} \left(h\Omega_m^{2/m} \left(f^{(r)}, h \right) + \frac{\pi^3}{nh^3} \int_0^h u(h-u)\Omega_m^{2/m} \left(f^{(r)}, u \right) du \right)^{m/2}.$$

Полагая в этом неравенстве $h = \pi/n$, находим

$$E_{n-1}(f) \leqslant \frac{3^{m/2}}{n^{r-m/2}\pi^{3m/2}}\Psi\left(\frac{\pi}{n}\right).$$
 (21)

Из неравенства (21) с учётом соотношения (3) между перечисленными выше n-поперечниками получим оценку сверху

$$\gamma_{2n} \left(W_m^{(r)}(\Psi; L_2) \leqslant \gamma_{2n-1} \left(W_m^{(r)}(\Psi); L_2 \right) \leqslant d_{2n-1} \left(W_m^{(r)}(\Psi); L_2 \right) \leqslant \\
\leqslant E_{n-1} \left(W_m^{(r)}(\Psi) \right)_{L_2} \leqslant \frac{3^{m/2}}{n^{r-m/2} \pi^{3m/2}} \Psi\left(\frac{\pi}{n} \right).$$
(22)

Для получения соответствующей оценки снизу для бернштейновского n- поперечника введем в рассмотрение (2n+1)-мерный шар полиномов

$$S_{2n+1} = \left\{ T_n(x) \in \mathcal{T}_n : \|T_n\| \leqslant \frac{3^{m/2}}{n^{r-m/2} \pi^{3m/2}} \Psi\left(\frac{\pi}{n}\right) \right\}$$

во множестве $\mathcal{T}_n \cap L_2$ и покажем, что этот шар принадлежит классу $W_m^{(r)}(\Psi)$. Для этого нам нужно доказать, что для любого полинома $T_n(x) \in S_{2n+1}$ выполняется неравенство

$$\left(h\Omega_m^{2/m}\left(T_n^{(r)},h\right) + \frac{\pi^3}{nh^3} \int_0^h u(h-u)\Omega_m^{2/m}\left(T_n^{(r)},u\right) du\right)^{m/2} \leqslant \Psi(h).$$

Согласно неравенству (17) и ограничению (19) на $\Psi(h)$ получаем

$$\left(h\Omega_{m}^{2/m}\left(T_{n}^{(r)},h\right) + \frac{\pi^{3}}{nh^{3}}\int_{0}^{h}u(h-u)\Omega_{m}^{2/m}\left(T_{n}^{(r)},u\right)du\right)^{m/2} \leqslant
\leqslant \left(2n^{2r/m}h\left(1 - \frac{\sin nh}{nh}\right)_{*}\|T_{n}\|^{2/m} +
+ \frac{\pi^{3}}{nh^{3}} \cdot 2n^{2r/m}\int_{0}^{h}u(h-u)\left(1 - \frac{\sin nu}{nu}\right)_{*}\|T_{n}\|^{2/m}du\right)^{m/2} \leqslant
\leqslant 2^{m/2}n^{r}\left(1 - \frac{\sin nh}{nh}\right)_{*}^{m/2}\|T_{n}\|\left(h + \frac{\pi^{3}}{nh^{3}}\int_{0}^{h}u(h-u)du\right)^{m/2} \leqslant
\leqslant \left(1 + \frac{6nh}{\pi^{3}}\right)^{m/2}\left(1 - \frac{\sin nh}{nh}\right)_{*}^{m/2}\Psi\left(\frac{\pi}{n}\right) \leqslant \Psi(h).$$
(23)

Из неравенства (23) следует включение $S_{2n+1} \in W_m^{(r)}(\Psi)$. Используя соотношение (3) между n-поперечниками и определение бернштейновского n-поперечника, запишем соответствующую оценку снизу

$$\gamma_{2n-1}\left(W_{m}^{(r)}(\Psi); L_{2}\right) \geqslant \gamma_{2n}\left(W_{m}^{(r)}(\Psi); L_{2}\right) \geqslant \\
\geqslant b_{2n}\left(W_{m}^{(r)}(\Psi); L_{2}\right) \geqslant b_{2n}\left(S_{2n+1}; L_{2}\right) \geqslant \frac{3^{m/2}}{n^{r-m/2}\pi^{3m/2}}\Psi\left(\frac{\pi}{n}\right).$$
(24)

Равенства (20) вытекают из сопоставления неравенств (22) и (24). □

Автор искренне признателен рецензенту за сделанные им ценные замечания в процессе подготовки статьи к печати.

Список литературы

- [1] Э. А. Стороженко, В. Г. Кротов, П. Освальд, "Прямые и обратные теоремы типа Джексона в пространствах L_p , $0 ", <math>Mamen.\ cfoppur$, 98:140 (1975), 395–415.
- [2] К. В. Руновский, "Прямая теорема о приближении "углом" в пространстве L_p , $0 ", <math>Mame_M$. заметки, **52**:5 (1992), 93–96.
- [3] С. Б. Вакарчук, "Точные константы в неравенствах типа Джексона и точные значения поперечников функциональных классов из L_2 ", Матем. заметки, **78**:5 (2005), 792–796.
- [4] С. Б. Вакарчук, В. И. Забутная, "Точное неравенство типа Джексона Стечкина в L_2 и поперечники функциональных классов", *Матем. заметки*, **86**:3 (2009), 328–336.
- [5] М. Ш. Шабозов, Г. А. Юсупов, "Точные константы в неравенствах типа Джексона и точные значения поперечников некоторых классов функций в L_2 ", Cub. матем. эсурнал, $52:6\ (2011),\ 1414-1427.$
- [6] М. Ш. Шабозов, С. С. Хоразмшоев, "Наилучшие полиномиальные приближения дифференцируемых периодических функций и значения поперечников классов функций, задаваемых обобщенными модулями непрерывности в L_2 ", Изв. АН РТ. Отд. физ.-мат., хим., геол. и техн. н., 1:142 (2011), 7–19.
- [7] С. Б. Вакарчук, В. И. Забутная, "Неравенство типа Джексона-Стечкина для специальных модулей непрерывности и поперечники функциональных классов в пространстве L_2 ", Матем. заметки, **92**:4 (2012), 497–514.
- [8] С.Б. Вакарчук, В.И. Забутная, "Неравенство между наилучшими полиномиальными приближениями и некоторыми характеристиками гладкости в пространстве L_2 и поперечники классов функций", *Матем. заметки*, **99**:2 (2016), 215–238.
- [9] С. Б. Вакарчук, А. Н. Щитов, "Наилучшие полиномиальные приближения в L_2 и поперечники некоторых классов функций", Укр. матем. журнал., **56**:11 (2004), 1458–1466.
- [10] В. М. Тихомиров, Некоторые вопросы теории приближений, МГУ, М., 1976.
- [11] A. Pinkus, n-Widths in Approximation Theory, Springer-Verlag, Heidelberg, New York, Tokyo, Berlin, 1985.

Langarshoev M. R. On the value of the widths of some classes of functions from L_2 . Far Eastern Mathematical Journal. 2021. V. 21. No 1. P. 61–70.

ABSTRACT

In this paper we find sharp inequalities of Jackson-Stechkin type between the best approximations of periodic differentiable functions by trigonometric polynomials and generalized moduli of continuity of m-th order in the space L_2 . The exact values of various n-widths of classes of functions from L_2 defined by the generalized modus of continuity of the r-th derivative of the function f are calculated.

Key words: best approximation, trigonometric polynomials, generalized modulus of continuity of higher order, n-widths.

References

- [1] E. A. Storozhenko, V. G. Krotov, P. Osval'd, "Priamye i obratnye teoremy tipa Dzheksona v prostranstvakh L_p , 0 ", <math>Matem. sbornik, 98:140 (1975), 395–415.
- [2] K. V. Runovskii, "Priamaia teorema o priblizhenii "uglom" v prostranstve L_p , $0 ", <math>Matem.\ zametki,\ 52:5\ (1992),\ 93-96.$
- [3] S.B. Vakarchuk, "Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniia poperechnikov funktsional'nykh klassov iz L_2 ", Matem. zametki, **78**:5 (2005), 792–796.
- [4] S. B. Vakarchuk, V. I. Zabutnaia, "Tochnoe neravenstvo tipa Dzheksona Stechkina v L₂ i poperechniki funktsional'nykh klassov", *Matem. zametki*, **86**:3 (2009), 328–336.
- [5] M. Sh. Shabozov, G. A. Iusupov, "Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniia poperechnikov nekotorykh klassov funktsii v L_2 ", Sib. matem. zhurnal, **52**:6 (2011), 1414–1427.
- [6] M. Sh. Shabozov, S. S. Khorazmshoev, "Nailuchshie polinomial'nye priblizheniia differentsiruemykh periodicheskikh funktsii i znacheniia poperechnikov klassov funktsii, zadavaemykh obobshchennymi moduliami nepreryvnosti v L₂", Izv. AN RT. Otd. fiz.-mat., khim., geol. i tekhn. n., 1:142 (2011), 7–19.
- [7] S. B. Vakarchuk, V. I. Zabutnaia, "Neravenstvo tipa Dzheksona-Stechkina dlia spetsial'nykh modulei nepreryvnosti i poperechniki funktsional'nykh klassov v prostranstve L_2 ", Matem. zametki, **92**:4 (2012), 497–514.
- [8] S. B. Vakarchuk, V. I. Zabutnaia, "Neravenstvo mezhdu nailuchshimi polinomial'nymi priblizheniiami i nekotorymi kharakteristikami gladkosti v prostranstve L_2 i poperechniki klassov funktsii", $Matem.\ zametki,\ 99:2\ (2016),\ 215-238.$
- [9] S. B. Vakarchuk, A. N. Shchitov, "Nailuchshie polinomial'nye priblizheniia v L₂ i poperechniki nekotorykh klassov funktsii", *Ukr. matem. zhurnal.*, 56:11 (2004), 1458–1466.
- [10] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976.
- [11] A. Pinkus, n-Widths in Approximation Theory, Springer-Verlag, Heidelberg, New York, Tokyo, Berlin, 1985.

¹ College near Moscow "Energia", Russia