УДК 519.65 MSC2010 97M50

© В. Г. Назаров¹

Задача частичной идентификации неизвестного вещества

В работе рассматривается задача частичной идентификации химического состава неизвестной среды методом многократного просвечивания этой среды коллимированным потоком рентгеновского излучения. Сформулирована математическа модель для задачи идентификации и дано её сравнение с задачей нахождения химического состава среды. Предложен метод решения задачи идентификации, основанный на построении специальной функции, названной индикатором различимости веществ. В качестве иллюстрации приводятся результаты расчетов, выполненных для различных конкретных групп химических элементов.

Ключевые слова: радиография сплошной среды, идентификация химического состава вещества, сингулярное разложение матрицы, точность вычислений.

Введение

Задача нахождения химического состава вещества и задача идентификации вещества радиографическими методами интересны с точки зрения теории и имеют несомненную практическую ценность. Радиографические методы полезны в тех случаях, когда требуется выполнить неразрушающий контроль изделия или когда непосредственный доступ к объекту исследования затруднен или нежелателен. Количество научных публикаций на эту тему как российских, так и зарубежных исследователей остается достаточно высоким; отметим среди них [1–3]. При этом авторы используют различные подходы к решению рассматриваемой задачи, и эти подходы могут заметно отличаться в зависимости от конкретной ситуации.

В данной работе рассматривается задача частичной идентификации химического состава среды методом многократного просвечивания среды коллимированным рентгеновским излучением. Эта задача тесно связана с задачей нахождения химического состава. В то же время она обладает спецификой, которая в определенных случаях позволяет в десятки и более раз снизить требования к точности измерительных приборов, необходимой для успешного решения проблемы. Это вызвано

 $^{^1}$ Институт прикладной математики ДВО РАН, 690041, г. Владивосток, ул. Радио, 7. Электронная почта: naz@iam.dvo.ru

тем, что в задаче частичной идентификации изначально не требуется найти химический состав исследуемого вещества X_0 , а нужно лишь показать (доказать), что это вещество не входит в список некоторых известных, заранее указанных веществ $Z = \{Z_1, Z_2, ..., Z_M\}$, в котором нет повторов. В список Z могут входить, например, некоторые взрывчатые, ядовитые и опасные вещества, запрещенные для провоза на транспорте. Если вещество таковым не является, то его можно провозить, а химический состав при этом не существенен. Такой подход к проблеме вполне приемлем, к примеру, при таможенном досмотре.

1. Предварительные замечания и постановка задачи

Далее мы считаем, что исследуемый образец G_0 неизвестного вещества X_0 , является однородным по химическому составу, и все химические элементы (или простые химические соединения, которые мы дальше также будем называть элементами), входящие в состав X_0 , присутствуют в некотором заранее заданном перечне элементов X_1, \dots, X_N , который нам известен. Образец G_0 имеет толщину l и подвергается облучению потоком фотонов, коллимированным как по направлению, так и по энергии и идущим вдоль некоторой фиксированной прямой. В ходе каждого измерительного эксперимента все фотоны имеют некоторую энергию E_k из фиксированного (дискретного) набора энергий излучения.

$$0.1 \text{ M} \ni B = E_1 < E_2 < \dots < E_{\overline{N}} = 20 \text{ M} \ni B; \qquad N \leqslant \overline{N}. \tag{1}$$

Далее при проведении численных экспериментов мы будем пользоваться числовыми данными для конкретных веществ и энерий, взятых из таблиц [4,5], где приводятся данные для 20 значений энергии. Мы ограничимся случаем $\overline{N} = 20$.

Пусть $h_k = h(E_k)$ — плотность потока излучения, входящего в G_0 , $H_k = H(E_k)$ — плотность потока излучения, выходящего из G_0 , для энергии E_k , k = 1, ..., N, $\mu_{0k} = \mu_0(E_k)$ — коэффициент ослабления излучения для вещества X_0 , $\mu_{xik} = \mu_{xi}(E_k)$ — коэффициенты ослабления излучения для X_i , i = 1, ..., N, ρ_0 — плотность вещества X_0 , ρ_{xi} — плотность X_i , w_i — массовая доля элемента X_i , входящего в состав вещества X_0 .

Расположение коллиматоров перед исследуемым веществом и после него позволяет выделить из начального потока излучения преимущественно только те фотоны, которые не вступали во взаимодействие с веществом и своей начальной энергии не потеряли. В таком случае и при введенных обозначениях уравнение переноса излучения [6,7] принимает простой вид и его следствием является экспоненциальное затухание плотности потока излучения в веществе. Поэтому для каждого значения энергии E_k мы можем записать равенство $H_k = h_k \exp(-l\mu_{0k}); \quad k=1,\ldots,N,$ откуда $\ln(H_k/h_k) = -l\mu_{0k}$. Согласно [4,5] справедлива формула

$$\mu_{0k} = \rho_0 \sum_{i=1}^{N} w_i \frac{\mu_{xik}}{\rho_{xi}}.$$

В итоге мы получаем следующую систему уравнений [8]

$$\sum_{i=1}^{N} \frac{\mu_{xik}}{\rho_{xi}} \cdot (l\rho_0 w_i) = \ln \frac{h_k}{H_k}; \qquad k = 1, \dots, N.$$
 (2)

В этой системе известная величина l намеренно помещена не в правую часть, а в левую, для того чтобы все уравнения были безразмерными. Массовые доли w_i элементов X_i , входящих в состав вещества X_0 , удовлетворяют соотношению

$$\sum_{i=1}^{N} w_i = 1 \tag{3}$$

и условиям

$$w_i \geqslant 0; \qquad i = 1, \dots, N. \tag{4}$$

Далее нам придется сравнивать задачу идентификации с ранее рассмотренной в [8] задачей химии, поэтому приведем формулировки обеих задач.

Задача 1. (задача химии) Найти величины $\rho_0, w_i, i=1,...,N$, удовлетворяющие уравнениям (2), (3) и неравенствам (4) при условии, что все остальные величины, входящие в (2), нам известны.

Задача 2. (задача идентификации) Пусть для вещества X_0 неизвестного состава известны величины l, $h_k = h(E_k)$ и $H_k = H(E_k)$, выполняются уравнения (2), (3) и неравенства (4). Выяснить, входит ли вещество X_0 в список веществ $Z = \{Z_1, \ldots, Z_M\}$ известного химического состава.

Возможно, приведенная формулировка задачи 2 выглядит несколько расплывчатой, поэтому сделаем пояснение.

- 1) В задаче 2 не требуется определять величины $\rho_0, w_i, i=1,...,N$ (но и не возбраняется).
- 2) Энергии, на которых исследователь может проводить просвечивание образца G_0 , могут выбираться произвольными, но все они обязаны входить в перечень (1).
- 3) Количество различных проведенных серий измерений величин $h_k = h(E_k)$ и $H_k = H(E_k)$ может быть любым конечным. Серия состоит из N экспериментов, в которых образец просвечивается на каждой энергии $E_1^{(p)}, E_2^{(p)}, \dots, E_N^{(p)}$ и находятся (с ошибками) величины $b_k = \ln(h_k/H_k)$; $k = 1, \dots, N$.

Далее для большей определенности будем считать (если не оговорено противное), что для каждой энергии E_k нам известна одна пара значений – $h_k = h(E_k)$ и $H_k = H(E_k)$. Другие возможные варианты постановки задачи 2 и их решения станут ясны из дальнейшего изложения. Перепишем (2) в виде Ax = b, или

$$\sum_{i=1}^{N} A_{ki} x_i = b_k; \quad k = 1, \dots, N,$$
(5)

где $A_{ki} = \mu_{xik}/\rho_{xi} = \mu_{xi}(E_k)/\rho_{xi}; \ x_i = l\rho_0 w_i; \ b_k = \ln(h_k/H_k).$

Будем рассматривать (5) как систему линейных алгебраических уравнений, в которой A и b известны, а x – неизвестный вектор, $x^T = (l\rho_0 w_1, ..., l\rho_0 w_N)$. Конкретное

значение известной величины l для нас будет несущественным, поэтому для упрощения обозначений далее считаем l=1.

Исследования, проведенные ранее и описанные в [8] для различных групп элементов $X_1, ..., X_N$ для значений N от 2 до 10, показали, что матрица A остается невырожденной практически при любом выборе значений энергий просвечивания образца $E_1, ..., E_N$, входящих в набор (1). Далее будем считать, что во всех рассматриваемых случаях матрица A не вырождена, тогда задача химии имеет решение и оно единственно [9]. В [8,9] было показано, что даже небольшие ошибки правой части системы (5), вызванные неточностью измерений входящего и выходящего потоков излучения h_k и H_k , могут привести к значительным ошибкам решения. Для изучения вопроса о возможной ошибке решения задачи химии вернемся к рассмотрению системы уравнений (5).

2. Возмущение решения задачи химии

Пусть $b=b_T+\delta b$, где b_T — вектор "точных" значений правой части системы (5), то есть таких значений $b_k=\ln(h_k/H_k),\ k=1,\dots,N$, которые мы имели бы в случае отсутствия ошибок измерения, δb — вектор возмущения, вызванный измерительными ошибками, $x=x_T+\delta x$, где x_T — точное, а x — возмущенное решение (5), так что выполняются равенства $A(x_T+\delta x)=b_T+\delta b$, $Ax_T=b_T$, и $A(\delta x)=\delta b$. Тогда

$$\delta x = A^{-1} \delta b. ag{6}$$

Напомним известные факты о сингулярном разложении матрицы [11,12]. Пусть $\lambda_1,...,\lambda_N$ — собственные числа матрицы $G=A^TA$, а $v_1,...,v_N$ — собственные векторы G, соответствующие $\lambda_1,...,\lambda_N$. Поскольку A не вырождена, то все $\lambda_i>0$. Пусть V и U есть $N\times N$ матрицы такие, что столбцы V образованы векторами $v_1,...,v_N$, а столбцы U — векторами $u_i=Av_i/\sqrt{\lambda_i}$. Тогда справедливо разложение

$$A = USV^T, (7)$$

где S есть диагональная матрица, $S = \text{diag}\{\sigma_1, ..., \sigma_N\}; \ \sigma_i = \sqrt{\lambda_i}; \ i = 1, ..., N$. При этом обе матрицы, V и U, ортогональные и справедлива формула

$$A^{-1} = VS^{-1}U^T, (8)$$

причем $S^{-1} = \operatorname{diag}\{\sigma_1^{-1},...,\sigma_N^{-1}\}$. Числа σ_i называются сингулярными числами матрицы A, а векторы $v_1,...,v_N$ — сингулярными векторами матрицы A.

Далее для удобства будем считать, что собственные числа матрицы G всегда занумерованы так, что $\lambda_1 \leqslant \lambda_2 \leqslant ... \leqslant \lambda_N$, тогда $\sigma_1^{-1} \geqslant \sigma_2^{-1} \geqslant ... \geqslant \sigma_N^{-1}$.

Спектральную норму матрицы A обозначим $||A||_S$, согласно [11]

$$||A||_S = \max_{||x||=1} ||Ax|| = \sqrt{\lambda_{\text{max}}} = \sigma_{\text{max}},$$
 (9)

а число обусловленности C_S матрицы A определяется формулой $C_S\!=\!C_S(A)\!=\!||A||_S\cdot||A^{-1}||_S$ и равно

 $C_S = \sqrt{\lambda_{\text{max}}/\lambda_{\text{min}}} = \sigma_{\text{max}}/\sigma_{\text{min}}.$ (10)

Из равенства $\delta x = A^{-1}\delta b$ и (8) при $\delta b = u_i$ получаем

$$\delta x^{(i)} = A^{-1} u_i = V S^{-1} U^T u_i = \sigma_i^{-1} v_i.$$
(11)

Отсюда несложно увидеть, что если в качестве множества возмущений правой части системы (5) взять единичную сферу $\Omega = \{\delta b | \delta b \in \mathbb{R}^N, ||\delta b|| = 1\}$, то множество $A^{-1}(\Omega) \subset \mathbb{R}^N$, состоящее из возмущений решения x_T , будет эллипсоидом, главные полуоси которого направлены вдоль сингулярных векторов v_1, \ldots, v_N и по длине равны $\sigma_1^{-1}, \ldots, \sigma_N^{-1}$.

Далее мы будем использовать следующие обозначения. $\widehat{\Omega} = \{\delta b | \delta b \in \mathbb{R}^N, ||\delta b|| \leqslant 1\}$, через $E^{(p)} = (E_1^{(p)}, E_2^{(p)}, \dots, E_N^{(p)})$, где p — целое положительное число, будет обозначаться какой-нибудь вектор, сформированный из поднабора энергий $\{E_1^{(p)}, E_2^{(p)}, \dots, E_N^{(p)}\}$, входящих в набор (1) и удовлетворяющих условию $E_1^{(p)} < E_2^{(p)} < \dots < E_N^{(p)}$.

Нетрудно увидеть, что всего существует $C_{20}^N=20!/[N!\cdot(20-N)!]$ таких векторов и они естественным образом (лексикографически) упорядочены. Это означает, что векторы $E^{(p)}=(E_1^{(p)},E_2^{(p)},...,E_N^{(p)})$ и $E^{(q)}=(E_1^{(q)},E_2^{(q)},...,E_N^{(q)})$ находятся в отношении $E^{(p)}< E^{(q)}$ тогда и только тогда, когда выполнено одно из следующих условий: либо $E_1^{(p)}< E_1^{(q)}$, либо $E_k^{(p)}=E_k^{(q)}$ при $1\leqslant k\leqslant r< N$ и $E_{r+1}^{(p)}< E_{r+1}^{(q)}$. Таким образом, верхний индекс p в записи $E^{(p)}$ есть порядковый номер вектора

Таким образом, верхний индекс p в записи $E^{(p)}$ есть порядковый номер вектора $E^{(p)}$ при данном упорядочивании. Для удобства через P будем обозначать набор целых положительных чисел $\{1,2,...,C_{20}^N\}$.

Каждому вектору $E^{(p)}$ соответствует (невырожденная) матрица $A = A(E^{(p)})$ системы (5), элементы которой $A_{ki} = \mu_{xik}/\rho_{xi} = \mu_{xi}(E_k^{(p)})/\rho_{xi}, \ k, i = 1, ..., N.$

Дальнейшее решение задачи 2 основано на анализе сингулярных чисел и векторов матрицы $A = A(E^{(p)})$ для всевозможных наборов энергий $\{E^{(p)}; p \in P\}$.

Теперь изложим вкратце основную идею работы, из которой станет понятна цель всех дальнейших построений и рассуждений. Проще всего это сделать в двумерном случае (N=2).

Пусть $\rho_T^{(0)}$, $w_{T1}^{(0)}$, $w_{T2}^{(0)}$ — точные значения плотности и массовых долей элементов X_1, X_2 , входящих в состав неизвестного нам вещества X_0 , так что величины $\rho_T^{(0)}$, $w_{T1}^{(0)}$, $w_{T2}^{(0)}$ нам не известны, так же как и координаты точки $x_T^{(0)} = (x_{T1}^{(0)}, x_{T2}^{(0)}) = (\rho_T^{(0)} w_{T1}^{(0)}, \rho_T^{(0)} w_{T2}^{(0)})$ в пространстве решений. Мы пытаемся выяснить, совпадает ли вещество X_0 с заданным веществом Z_1 из списка Z.

Пусть $\rho_T^{(1)}$, $w_{T1}^{(1)}$, $w_{T2}^{(1)}$ – значения плотности и массовых долей элементов X_1, X_2 , входящих в состав вещества Z_1 а $x_T^{(1)} = (x_{T1}^{(1)}, x_{T2}^{(1)}) = (\rho_T^{(1)} w_{T1}^{(1)}, \rho_T^{(1)} w_{T2}^{(1)})$ – соответствующая ему точка в пространстве решений; ее координаты нам известны. Зафиксируем какой-нибудь набор энергий $E^{(p)}$, для которого матрица $A(E^{(p)})$ не вырождена. В результате решения системы Ax = b мы найдем с ошибками точку $x^{(0)} = (x_1^{(0)}, x_2^{(0)}) = (\rho^{(0)} w_1^{(0)}, \rho^{(0)} w_2^{(0)})$.

Пусть $\widehat{a} \geqslant 0$ – амплитуда погрешности измерительного прибора (далее АПП). Это такое минимальное неотрицательное число, что в любой серии измерений выполняется неравенство $||b-b_T||\leqslant \widehat{a}$. Ясно, что точка $x^{(0)}$ всегда принадлежит множеству $x_T^{(0)}+A^{-1}(\widehat{a}\widehat{\Omega})$, а точка $x_T^{(0)}$ всегда принадлежит множеству $x^{(0)}+A^{-1}(\widehat{a}\widehat{\Omega})$. Далее в

утверждении 3 будет показано, что для любого N и для любой точки $x^{(0)}$ (полученой для заданного \widehat{a}) справедливо включение $x^{(0)} + A^{-1}(\widehat{a}\widehat{\Omega}) \subset x_T^{(0)} + A^{-1}(\widehat{2}a\widehat{\Omega})$.

Теперь предположим, что вещества X_0 и Z_1 различны (но нам это пока что неизвестно), так что $x_T^{(0)} \neq x_T^{(1)}$, и что мы можем менять АПП от 0 до ∞ . Обозначим через B (от слова Best — лучший) и W (от слова Worst — худший) точки пересечения прямой $\{(x_T^{(1)}-x_T^{(0)})\cdot t\mid t\in\mathbb{R}\}$ с эллипсом $x_T^{(0)}+A^{-1}(\widehat{a}\Omega)$, как показано на рис.1. Выберем достаточно малое \widehat{a} , при котором $x_T^{(1)} \notin x_T^{(0)}+A^{-1}(2\widehat{a}\widehat{\Omega})$.

Начнем увеличивать \widehat{a} . При некотором $\widehat{a}=\widehat{a_0}$ точка $x_T^{(1)}$ окажется на эллипсе $x_T^{(0)}+A^{-1}(2\widehat{a_0}\Omega)$, то есть $x_T^{(1)}\in x_T^{(0)}+A^{-1}(2\widehat{a_0}\Omega)$.

Это означает, что при $\widehat{a}<\widehat{a_0}$, какова бы ни была ошибка правой части системы (5), точка $x_T^{(1)}$ не будет принадлежать множеству $x^{(0)}+A^{-1}(\widehat{a_0}\widehat{\Omega})$. Значит, при любой ошибке правой части в результате одной-единственной серии измерений мы сможем утверждать, что $x_T^{(1)}\neq x_T^{(0)}$, т.е. вещества X_0 и Z_1 различны.

Если $\widehat{a}=\widehat{a_0}$ и после проведения первой серии измерений и вычисления $x^{(0)}==A^{-1}(b)$ окажется, что $x^{(0)}\neq W$, то мы получим $x_T^{(1)}\not\in x^{(0)}+A^{-1}(\widehat{a_0}\widehat{\Omega})$, и снова вещества X_0 и Z_1 различны. Однако, если при $\widehat{a}=\widehat{a_0}$ произойдет так, что $x^{(0)}=W$, то $x_T^{(1)}\in x^{(0)}+A^{-1}(\widehat{a_0}\widehat{\Omega})=W+A^{-1}(\widehat{a_0}\widehat{\Omega})$ и у нас нет оснований утверждать, что вещества X_0 и Z_1 различны.

Наконец, при $\widehat{a} > \widehat{a_0}$ и достижимости любого $\delta b \in \widehat{a}\widehat{\Omega}$ существует бесконечно много различных δx в (6), при которых реализуются как случай $x_T^{(1)} \in x^{(0)} + A^{-1}(\widehat{a}\widehat{\Omega})$, так и случай $x_T^{(1)} \notin x^{(0)} + A^{-1}(\widehat{a}\widehat{\Omega})$, поэтому гарантировать, что неравенство $X_0 \notin Z_1$ будет установлено за конечное число серий измерений, нельзя.

При $\widehat{a} \to \infty$ случаи $x_T^{(1)} \notin x^{(0)} + A^{-1}(\widehat{a_0}\widehat{\Omega})$ (при которых мы получаем $X_0 \neq Z_1$) реализуются тогда и только тогда, когда точка $x^{(0)} = A^{-1}(b)$ попадает в достаточно малую окрестность точки B.

Таким образом, для любого набора энергий $E^{(p)}$ (для которого матрица A не вырождена), любой (сколь угодно большой) АПП и любой малости $||x_T^{(1)}-x_T^{(0)}||$ есть шанс установить неравенство $X_0 \neq Z_1$ всего за одну серию измерений.

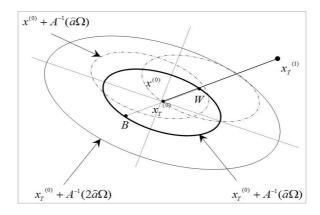


Рис. 1. Различные эллипсы возмущения решения для N=2 и $\hat{a}<\hat{a_0}$.

Подчеркнем еще раз, что величина $\widehat{a_0}$ равна **половине** радиуса сферы возмущения правой части системы (5), при котором имеет место включение $x_T^{(1)} \in x_T^{(0)} + A^{-1}(2\widehat{a_0}\Omega)$. Из сказанного ясно, что $\widehat{a_0}$ зависит от вектора $x_T^{(1)} - x_T^{(0)}$ и от матрицы A^{-1} , а значит, от набора энергий $E^{(p)} = (E_1^{(p)}, E_2^{(p)}, \dots, E_N^{(p)})$, на которых происходило просвечивание неизвестного вещества.

Эти утверждения без труда переносятся на произвольный N-мерный случай. Перед тем как перейти к его рассмотрению, сформулируем несколько несложных утверждений.

Утверждение 1. а) Пусть V = V(N,N) — произвольная невырожденная матрица, $\varphi : \mathbb{R}^N \to \mathbb{R}$ — произвольная функция,

$$D = \{ x \in \mathbb{R}^N \mid \varphi(x) = 0 \}, \tag{12}$$

тогда

$$VD = \{ y \in \mathbb{R}^N \mid \varphi(V^{-1}y) = 0 \}. \tag{13}$$

b) Пусть d_1,\dots,d_N — положительные числа, функция $\varphi:\mathbb{R}^N\to\mathbb{R}$ определена равенством

$$\varphi(x) = \varphi(x_1, \dots, x_N) = \sum_{k=1}^{N} x_k^2 / d_k^2 - 1,$$
(14)

 $\widehat{D} = \{x \in \mathbb{R}^N \ | \ \varphi(x) \leqslant 0\}$ и V = V(N,N) — ортогональная матрица, тогда

$$VD = \{ x \in \mathbb{R}^N \mid \sum_{k=1}^N (x^T V)_k^2 / d_k^2 - 1 = 0. \}$$
 (15)

$$V\widehat{D} = \{ x \in \mathbb{R}^N \mid \sum_{k=1}^N (x^T V)_k^2 / d_k^2 - 1 \le 0. \}$$
 (16)

 \mathcal{A} о казательство. а) Обозначим через R_1 и R_2 правые части в равенствах (12) и (13). Пусть $y_0 \in VD$, тогда $y_0 = Vx_0$, где $x_0 \in D$, значит, $x_0 = V^{-1}y_0$ и $\varphi(x_0) = \varphi(V^{-1}y_0) = 0$, значит, $y_0 \in R_2$. Наоборот, если $y_0 \in R_2$, то $\varphi(V^{-1}y_0) = 0$, тогда для точки $x_0 = V^{-1}y_0$ имеем $\varphi(x_0) = 0$, значит, $x_0 = V^{-1}y_0 \in R_1 = D$, откуда $y_0 \in VD$.

b) В силу пункта а) множество VD определено уравнением $\varphi(V^{-1}x)=0$. Поскольку $V^{-1}=V^T$, то это уравнение можно записать в виде

$$\varphi(V^T x) = \varphi(\sum_{j=1}^N V_{1j}^T x_j, \dots, \sum_{j=1}^N V_{Nj}^T x_j) = \varphi(\sum_{j=1}^N V_{j1} x_j, \dots, \sum_{j=1}^N V_{jN} x_j) = 0,$$

или, с учетом (14), $(\sum_{j=1}^N V_{j1}x_j)^2/d_1^2+\ldots+(\sum_{j=1}^N V_{jN}x_j)^2/d_N^2-1=0$, или окончательно $\sum_{k=1}^N \left[(\sum_{j=1}^N V_{jk}x_j)^2/d_k^2\right]-1=\sum_{k=1}^N (x^TV)_k^2/d_k^2-1=0$. Поскольку D есть граница

выпуклого множества \widehat{D} , то (16) следует из (15).

Утверждение 2. Пусть $\omega=(\omega_1,\dots,\omega_N)$ – единичный вектор в $\mathbb{R}^N,V=V(N,N)$ — ортогональная матрица, тогда

а) прямая $r(t) = \omega \cdot t, -\infty < t < \infty$ пересекается с VD при

$$t_1 = \pm \left[\sum_{k=1}^{N} (\omega^T V)_k^2 / d_k^2 \right]^{-1/2}$$
 (17)

в точках

$$r^{(1)} = \omega \cdot \left[\sum_{k=1}^{N} (\omega^T V)_k^2 / d_k^2 \right]^{-1/2}, \qquad r^{(-1)} = -\omega \cdot \left[\sum_{k=1}^{N} (\omega^T V)_k^2 / d_k^2 \right]^{-1/2}$$
(18)

так что

$$||r^{(1)}|| = ||r^{(-1)}|| = |t_1| = \left[\sum_{k=1}^{N} (\omega^T V)_k^2 / d_k^2\right]^{-1/2}.$$
 (19)

б) точка $r(t) \in \widehat{D}$ тогда и только тогда, когда $-|t_1| \leqslant t \leqslant |t_1|$

Доказательство. Полагая $x_j = \omega_j t_1$ и используя (15), получим уравнение

$$\sum_{k=1}^{N} \left[\left(\sum_{j=1}^{N} V_{jk} \omega_{j} t_{1} \right)^{2} / d_{k}^{2} \right] - 1 = 0,$$

или

$$t_1^2 \cdot \sum_{k=1}^N \left[(\sum_{j=1}^N V_{jk} \omega_j)^2 / d_k^2 \right] = t_1^2 \cdot \sum_{k=1}^N (\omega^T V)_k^2 / d_k^2 = 1,$$

значит, $t_1 = \pm \left[\sum\limits_{k=1}^N (\omega^T V)_k^2/d_k^2\right]^{-1/2}$, откуда и следует а). Далее,

$$||r^{(1)}|| = ||r^{(-1)}|| = ||\omega t_1|| = |t_1| \cdot ||\omega|| = |t_1| = [\sum_{k=1}^{N} (\omega^T V)_k^2 / d_k^2]^{-1/2}$$

Последний пункт утверждения очевиден.

Утверждение 3. Пусть V=V(N,N) — ортогональная матрица, тогда справедливо равенство

$$B_V = \bigcup_{y \in VD} (y + V\widehat{D}) = \{ z = (z_1, \dots, z_N) \in \mathbb{R}^{\mathbb{N}} \mid \sum_{k=1}^N (z^T V)_k^2 / (2d_k)^2 \le 1 \} = 2V\widehat{D}.$$
 (20)

Доказательство. Равенства (20) означают, что объединение всех множеств $y+V\widehat{D},\ y\in VD$ приводит к "удвоению" размера начального множества $\widehat{D}.$

Докажем это равенство сначала для случая, когда V — единичная матрица. В этом случае последнее равенство в (20) следует из утверждения 2.

Пусть $B = \bigcup_{y \in D} (y + \widehat{D}), \, z \in B$ и z = y + x для некоторых $y \in D$ и $x \in \widehat{D},$ тогда

$$\sum_{k=1}^{N} y_k^2/d_k^2 = 1 \qquad \text{if} \qquad \sum_{k=1}^{N} x_k^2/d_k^2 \leqslant 1. \tag{21}$$

Поскольку $(x_k-y_k)^2=x_k^2+y_k^2-2x_ky_k\geqslant 0$, то $2x_ky_k\leqslant x_k^2+y_k^2$, откуда $(x_k+y_k)^2=x_k^2+y_k^2+2x_ky_k\leqslant 2(x_k^2+y_k^2)$. Тогда $(x_k+y_k)^2/2\leqslant (x_k^2+y_k^2)$ и из (21) получаем $\sum\limits_{k=1}^N(x_k+y_k)^2/(2d_k^2)\leqslant \sum\limits_{k=1}^N(x_k^2+y_k^2)/d_k^2\leqslant 2$, откуда $\sum\limits_{k=1}^N(x_k+y_k)^2/(2d_k)^2\leqslant 1$, значит, $z\in 2\widehat{D}$.

Наоборот, пусть $z \in 2\widehat{D}$. Если z=0, то z=y+x, например, для $y=(d_1,0,\dots,0)$ и $x=(-d_1,0,\dots,0)$; при этом $y\in D,\ x\in D$ и $z\in B$. Пусть теперь $z=(z_1,\dots,z_N)\neq 0$. Определим единичный вектор ω формулой $z=\omega||z||$. Пусть

$$t_1 = \left[\sum_{k=1}^N \omega_k^2 / d_k^2\right]^{-1/2} = ||z|| \left[\sum_{k=1}^N z_k^2 / d_k^2\right]^{-1/2};$$

$$t_2 = \left[\sum_{k=1}^N \omega_k^2 / (2d_k)^2\right]^{-1/2} = ||z|| \left[\sum_{k=1}^N z_k^2 / (2d_k)^2\right]^{-1/2} = 2t_1.$$

Поскольку $z \in 2\widehat{D}$, то $0 < ||z|| \le t_2 = 2t_1$. Представим z в виде суммы векторов $z = \omega t_1 + (z - \omega t_1) = \omega t_1 + \omega (||z|| - t_1)$, тогда, в силу утверждения 2 точка $\omega t_1 \in D$. Поскольку $0 < ||\omega(||z|| - t_1)|| = |||z|| - t_1| \le t_1$, то точка $\omega(||z|| - t_1) \in \widehat{D}$, значит, $z \in B$ и утверждение 3 доказано для случая, когда V — единичная матрица, то есть

$$B = \bigcup_{y \in D} (y + \widehat{D}) = \left\{ z = (z_1, \dots, z_N) \in \mathbb{R}^{\mathbb{N}} \mid \sum_{k=1}^{N} (z)_k^2 / (2d_k)^2 \leqslant 1 \right\} = 2\widehat{D}.$$
 (22)

Пусть V — произвольная ортогональная матрица. Тогда, действуя матрицей V слева на множества в (22), получим:

1)
$$VB = V \bigcup_{y \in D} (y + \widehat{D}) = \bigcup_{y \in D} V(y + \widehat{D}) = \bigcup_{y \in D} (Vy + V\widehat{D}) = \bigcup_{z \in VD} (z + V\widehat{D}) = B_V$$

- 2) $V(2\widehat{D}) = 2V\widehat{D}$
- 3) равенство $2V\widehat{D}=\{z=(z_1,\ldots,z_N)\in\mathbb{R}^{\mathbb{N}}\mid \sum\limits_{k=1}^N(z^TV)_k^2/(2d_k)^2\leqslant 1\}$ следует из утверждения 1.

Итак, формула (20), а вместе с ней и утверждение 3, доказаны.

3. Индикатор различимости веществ

Вернемся к системе уравнений (5). Зафиксируем некоторый набор энергий $E^{(p)}$; пусть $A = A(E^{(p)})$ — соответствующая ему матрица, $\sigma_1, ..., \sigma_N$ — её сингулярные числа, V — матрица сингулярных векторов для $A, \varphi : \mathbb{R}^N \to \mathbb{R}$ — функция, определенная

равенством (14) при $d_k = \sigma_k^{-1}$; k = 1, ..., N. Тогда, в силу формулы (8) и утверждения 1, множество $A^{-1}\Omega = VS^{-1}\Omega$ определяется в пространстве решений \mathbb{R}^N уравнением $\varphi(V^{-1}x) = 0$, или

 $\sum_{k=1}^{N} \left[\left(\sum_{j=1}^{N} V_{jk} x_{j} \right)^{2} \sigma_{k}^{2} \right] - 1 = 0.$

Пусть $a \geqslant 0$ — амплитуда возмущения, входящая в правую часть системы $Ax = b = b_T + a \cdot \delta b, \;\; \delta b \in \Omega$ и $x_T^{(0)} = A^{-1}(b_T),$ тогда множество (эллипсоид)

$$A^{-1}(b_T + a\Omega) = A^{-1}(b_T) + VS^{-1}(a\Omega) = x_T^{(0)} + aVS^{-1}(\Omega)$$

определяется уравнением

$$\frac{1}{a^2} \sum_{k=1}^{N} \left(\sum_{j=1}^{N} V_{jk} \left(x_j - x_{Tj}^{(0)} \right) \right)^2 \sigma_k^2 - 1 = 0$$

или

$$\sum_{k=1}^{N} \left(\sum_{j=1}^{N} V_{jk} \left(x_j - x_{Tj}^{(0)} \right) \right)^2 \sigma_k^2 = a^2.$$

Отсюда следует, что произвольная точка $x_T^{(1)} = (x_{T1}^{(1)}, ..., x_{TN}^{(1)})$ в пространстве решений принадлежит множеству $A^{-1}(b_T + a\Omega)$ тогда и только тогда, когда

$$\sum_{k=1}^{N} \left(\sum_{j=1}^{N} V_{jk} \left(x_{Tj}^{(1)} - x_{Tj}^{(0)} \right) \right)^{2} \sigma_{k}^{2} = a^{2}.$$

Это произойдет при

$$a = a_0 = \left(\sum_{k=1}^{N} \left(\sum_{j=1}^{N} V_{jk} \left(x_{Tj}^{(1)} - x_{Tj}^{(0)}\right)\right)^2 \sigma_k^2\right)^{1/2}.$$
 (23)

Пусть

$$x_T^{(1)} \neq x_T^{(0)}$$
 u $\omega = (\omega_1, \dots, \omega_N) = \frac{x_T^{(1)} - x_T^{(0)}}{\left\| x_T^{(1)} - x_T^{(0)} \right\|},$

тогда

$$\omega_j = \frac{x_{Tj}^{(1)} - x_{Tj}^{(0)}}{\left\| x_T^{(1)} - x_T^{(0)} \right\|} = \frac{\left(x_T^{(1)} - x_T^{(0)}, e_j \right)}{\left\| x_T^{(1)} - x_T^{(0)} \right\|} \qquad \text{if} \qquad x_{Tj}^{(1)} - x_{Tj}^{(0)} = \left\| x_T^{(1)} - x_T^{(0)} \right\| \omega_j.$$

Отсюда и из формулы (23) получаем

$$a_0 = \left\| x_T^{(1)} - x_T^{(0)} \right\| \cdot \left(\sum_{k=1}^N \left(\sum_{j=1}^N V_{jk} \omega_j \right)^2 \sigma_k^2 \right)^{1/2} = \left\| x_T^{(1)} - x_T^{(0)} \right\| \cdot \left(\sum_{k=1}^N \left(\omega^T V \right)_k^2 \sigma_k^2 \right)^{1/2}. \tag{24}$$

Пусть $\rho = \|x_T^{(1)} - x_T^{(0)}\|$ и $S^{(N-1)}$ — единичная (N-1)-мерная сфера в \mathbb{R}^N . Сингулярные числа σ_k и векторы V_k зависят от набора энергий $E^{(p)} = (E_1^{(p)}, \dots, E_N^{(p)})$, на которых происходят просвечивания образца, поэтому неотрицательную величину a_0 , определенную формулой (24), можно считать функцией следующих переменных: $a_0 = a_0(E^{(p)}, \rho, \omega), \ p \in P = \{1, \dots, C_{20}^N\}$. Для любых $(\rho, \omega) \in (0, +\infty) \times S^{(N-1)}$ определено число

$$a^* = a^*(\rho, \omega) = \max_{p \in P} \{ a_0(E^{(p)}, \rho, \omega) \} = \rho \cdot \max_{p \in P} \left(\sum_{k=1}^N (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2 \right)^{1/2}.$$
 (25)

Пусть

$$\Phi(\omega) = a^*(1, \omega) = \max_{p \in P} \left(\sum_{k=1}^{N} (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2 \right)^{1/2}, \tag{26}$$

тогда $a^*(\rho,\omega) = \rho \cdot \Phi(\omega)$. Таким образом, формулы (25) и (26) определяют функции $a^*: (0,+\infty) \times S^{(N-1)} \to \mathbb{R}$ и $\Phi: S^{(N-1)} \to \mathbb{R}$. Несложно увидеть, что $\Phi(\omega) > 0$ и $\Phi(\omega) = \Phi(-\omega)$. Из дальнейшего также будет ясно, что функция Φ непрерывна.

С функция $\Phi(\omega)$ тесно связана (присоединенная к $\Phi(\omega)$) функция $\Phi_P: S^{(N-1)} \to \{E^{(p)}; \ p=1,...,C_{20}^N\}$. Областью ее значений является (конечное дискретное) множество $\{E^{(p)}; \ p=1,...,C_{20}^N\}$, состоящее из всевозможных наборов энергий $E^{(p)}==(E_1^{(p)},E_2^{(p)},...,E_N^{(p)})$, которые определялись ранее в разделе 2.

По определению $\Phi_P(\omega)$ есть множество всех тех наборов энергий $E^{(p)}$, при которых достигается максимум в формуле (26); при конкретном значении вектора ω максимум может достигаться одновременно для нескольких различных наборов $E^{(p)}$. Из дальнейшего будет ясно, что такая ситуация является вполне естественной и даже необходимой. Таким образом, функция Φ_P является многозначной. Иногда для краткости мы также будем писать $\Phi_P(\omega) = p$, имея в виду то $p \in P$, которое входит в запись $E^{(p)}$.

Также с функцией Φ тесно связана (зеркальная к ней) функция $\Phi_Z: S^{(N-1)} \to \mathbb{R}$, которая определяется формулой $\Phi_Z(\omega) = [\Phi(\omega)]^{-1}$. График этой функции имеет простую (и полезную) интерпретацию, в связи с чем докажем следующее утверждение.

Утверждение 4. а) Для любого $\omega \in S^{(N-1)}$ справедливо равенство

$$\Phi_Z(\omega) = [\Phi(\omega)]^{-1} = \left[\max_{p \in P} \left(\sum_{k=1}^N (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2 \right)^{1/2} \right]^{-1} = \min_{p \in P} \left(\sum_{k=1}^N (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2 \right)^{-1/2},$$
(27)

причем в последнем равенстве $\max_{p\in P}$ слева и $\min_{p\in P}$ справа достигаются на одних и тех же $p\in P.$

b) Пусть
$$D^{(p)} = [A(E^{(p)})]^{-1}\Omega$$
, $\widehat{D}^{(p)} = [A(E^{(p)})]^{-1}\widehat{\Omega}$, $\Pi = \bigcap_{p \in P} \widehat{D}^{(p)}$, тогда

$$D^{(p)} = V^{(p)}(S^{(p)})^{-1}\Omega, \qquad \widehat{D}^{(p)} = V^{(p)}(S^{(p)})^{-1}\widehat{\Omega}$$
 (28)

И

$$\partial \Pi = \left\{ \omega \cdot \Phi_Z(\omega) \mid \omega \in S^{(N-1)} \right\}. \tag{29}$$

Доказательство. а) Обозначим

$$f(p,\omega) = \left(\sum_{k=1}^{N} (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2\right)^{1/2}.$$

Покажем, что $[\max_{p\in P} f(p,\omega)]^{(-1)} = \min_{p\in P} [f(p,\omega)]^{(-1)}$. Зафиксируем ω . Пусть $\max_{p\in P} f(p,\omega)$ достигается при $p=p_1$, тогда $f(p_1,\omega)\geqslant f(p_2,\omega)$ $\forall p_2$, т.е. $[f(p_1,\omega)]^{(-1)}\leqslant [f(p_2,\omega)]^{(-1)}$ $\forall p_2$. Значит, $\min_{p\in P} [f(p,\omega)]^{(-1)}$ достигается при $p=p_1$ и

$$\min_{p \in P} [f(p,\omega)]^{(-1)} = [f(p_1,\omega)]^{(-1)} = [\max_{p \in P} f(p,\omega)]^{(-1)}.$$

b) Формулы (28) следуют из разложения $(A(E^{(p)}))^{(-1)} = V^{(p)} \cdot (S^{(p)})^{-1} \cdot (U^{(p)})^T$ — см. (8). Пусть $x \in \partial \Pi$. Ясно, что все $\widehat{D}^{(p)}$ замкнуты, выпуклы, $x \neq 0$ и определен вектор $\omega = x/\|x\|$. В силу утверждения 2 несложно увидеть, что при $d_k = 1/\sigma_k$ для некоторого $p_1 \in P$, при котором достигается $\min_{p \in P} \left(\sum_{k=1}^N (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2\right)^{-1/2}$, справедливо включение $x \in \partial \widehat{D}^{(p_1)} = D^{(p_1)}$. Отсюда и из а) мы получаем

$$x = \omega \cdot ||x|| = \omega \cdot \left[\sum_{k=1}^{N} (\omega^T V^{(p_1)})_k^2 (\sigma_k^{(p_1)})^2 \right]^{-1/2}$$

И

$$||x|| = \left[\sum_{k=1}^{N} (\omega^T V^{(p_1)})_k^2 (\sigma_k^{(p_1)})^2\right]^{-1/2} = \min_{p \in P} \left[\sum_{k=1}^{N} (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2\right]^{-1/2} = \Phi_Z(\omega).$$

Значит, $x = \omega \cdot ||x|| = \omega \cdot \Phi_Z(\omega)$ и справедливо включение

$$\partial \Pi \subset \left\{ \omega \cdot \Phi_Z(\omega) \mid \omega \in S^{(N-1)} \right\}$$

Обратное включение доказывается аналогично.

Функция $\Phi(\omega)$ оказывается весьма полезной при анализе того, насколько хорошо или плохо могут быть "различимы" (или "отделимы" друг от друга) два различных конкретных вещества, поэтому её можно назвать **индикатором различимости веществ**. В некотором отношении эта функция напоминает **индикатор видимости среды**, введенный в компьютерную томографию Д. С. Аниконовым [13].

Построим график функции $\Phi(\omega)$ в двумерном случае (N=2). Согласно ранее сказанному, далее мы будем использовать множество всевозможных наборов энергий $\left\{E^{(p)}=(E_1^{(p)},E_2^{(p)});\ 1\leqslant p\leqslant C_{20}^2=190\right\}$.

При
$$N=2$$
 вектор
$$\omega=(\omega_1,\omega_2)=\frac{x_T^{(1)}-x_T^{(0)}}{\left\|x_T^{(1)}-x_T^{(0)}\right\|}$$

удобно представлять в виде $\omega = (\cos\varphi, \sin\varphi)$, где φ — угол между осью x_1 и вектором ω , а функцию $\Phi(\omega)$ записывать в виде

$$\Phi(\varphi) = \max_{p \in P} \left(\sum_{k=1}^{2} (\omega^T V^{(p)})_k^2 (\sigma_k^{(p)})^2 \right)^{1/2}; \qquad 0 \leqslant \varphi < 2\pi, \quad \omega_1 = \cos \varphi, \quad \omega_2 = \sin \varphi.$$

Была написана компьютерная программа, которая для заданной пары химических элементов X_1, X_2 на основе таблиц [4,5] находит все сингулярные числа σ_k и векторы $V_{\cdot k}$ (столбцы матрицы V) для каждого набора $E^{(p)}$, а затем вычисляет функции $\Phi(\varphi)$, $\Phi_Z(\varphi)$ и $\Phi_P(\varphi)$ на промежутке $0 \leqslant \varphi < 2\pi$, в узлах равномерной сетки с шагом 1° .

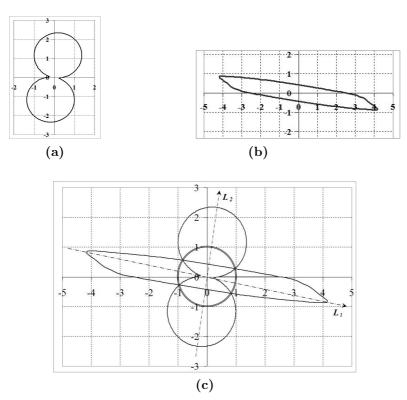


Рис. 2. Результаты численного эксперимента для пары Водород – Барий в полярных координатах в пространстве решений \mathbb{R}^2 : (a) — график функции $\Phi(\varphi)$, (b) — график функции $\Phi_Z(\varphi)$, (c) — рисунки (a) и (b) после масштабирования наложены друг на друга и к ним добавлена единичная окружность.

В качестве первого примера рассмотрим пару элементов водород (H) – барий (Ba). Для нее графики функций $\Phi(\varphi)$ и $\Phi_Z(\varphi)$ в полярных координатах представлены на рис. 2 (a), (b).

На рис. 2 (c) эти два графика были наложены друг на друга и к ним был добавлен график единичной окружности. Причиной, по которой была выбрана эта пара элементов, состояла главным образом только в том, что для неё все три графика могут быть полностью расположены на одном рисунке (рис. 2 (c)). Значения функци Φ_P для этой пары приведены в таблице 1; для краткости указан лишь порядковый номер p соответствующего набора энергий $E^{(p)} = (E_1^{(p)}, E_2^{(p)}); 1 \leqslant p \leqslant C_{20}^2 = 190$, а не сами значения энергий.

Отметим следующее. График функции $\Phi_Z(\varphi)$ похож на эллипс, но им не является. Далее для краткости эту фигуру будем называть псевдоэллипсом (или, при N>2, псевдоэллипсоидом).

На рис. 2 (c) прямая L_1 проходит через точку (0,0) и две самые удаленные от (0,0) точки графика $\Phi_Z(\varphi)$. Прямая L_2 проходит также через точку (0,0) и две самые близкие к ней точки графика. Для краткости будем называть L_1 и L_2 псевдоосями фигуры. В общем случае псевдооси не ортогональны друг другу, но, как показали расчеты для разных пар химических элементов, как правило, угол между ними близок к прямому. Интересно, что на рис. 2 (c) есть четыре точки, расположенные двумя парами, каждая из которых симметрична относительно точки (0,0). В этих точках одновременно пересекаются все три графика, как это и должно быть согласно формуле $\Phi_Z(\omega) = [\Phi(\omega)]^{-1}$.

Таблица 1. Функция $\Phi_P(\varphi)$ для пары Водород – Барий.

Угол φ ,	0° -	154° –	161° –	169°	170° –	175° –	179°
градусы	153°	160°	168°		174°	178°	
Значение р	1	4	3	55	38	20	1

Функция $\Phi_P(\varphi)$ периодична с периодом π , и в таблице 1 приводятся ее значения для периода. Принимаемое функцией $\Phi_P(\varphi)$ множество значений состоит всего лишь из шести различных точек, причем на большей части области определения принимается значение $E^{(1)} = (E_1, E_2) = (0.1 \text{ MeV}, 0.15 \text{ MeV})$. Такая ситуация (доминирование какого-то одного набора $E^{(p)}$) является типичной для многих различных наборов химических элементов. В некоторых точках (не представленных в таблице) $\Phi_P(\varphi)$ принимает сразу два значения и они соответствуют точкам пересечения эллипсов $D^{(p)}$ (см. утверждение 4), в которых максимум достигается сразу на нескольких различных наборах $E^{(p)}$.

Таблица 2. Некоторые основные характеристики матрицы $A = A(E^{(p)})$ для пары Водород – Барий для некоторых значений вектора $E^{(p)}$.

Набор	Длины полуосей $\sigma_1^{-1}, \ \ \sigma_2^{-1}$	Комментарий	
энергий $E^{(k)}$	и угол наклона ψ		
	$\sigma_1^{-1} = 5.45, \ \sigma_2^{-1} = 0.44, \ \psi = 171.45^{\circ}$	σ_1^{-1} минимальна	
$E^{(1)} = (E_1, E_2)$	$\sigma_1^{-1} = 6.71, \ \sigma_2^{-1} = 0.42, \ \psi = 171.03^{\circ}$	σ_2^{-1} минимальна	

Угол ψ , указанный в таблице 2 для наборов энергий $E^{(1)}$ и $E^{(2)}$, есть угол между координатной осью x_1 и первой (то есть соответствующей σ_1) осью эллипса для $E^{(1)}$ и $E^{(2)}$ соответственно. Набор энергий $E^{(1)}$ важен тем, что он чаще всего встречается в таблице 1 в качестве значений функции $\Phi_P(\varphi)$. Что касается набора $E^{(2)}$, то он лучше всего подходит для решения задачи химии, поскольку обеспечивает наименьшую норму ошибки решения. Однако интересно, что длина большой псевдооси множества Π меньше, чем $\sigma_1^{-1} = 5.45$ для $E^{(2)}$.

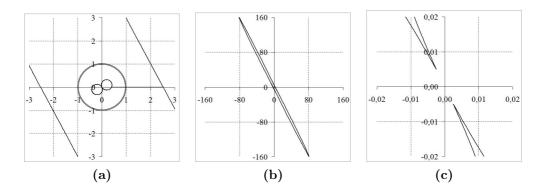


Рис. 3. Результаты численного эксперимента: (a) — Фрагмент центральной части графиков функций $\Phi(\varphi)$, $\Phi_Z(\varphi)$ и единичной окружности, наложенных друг на друга, для пары Водород—Углерод в полярных координатах в пространстве решений, (b) — уменьшенный в 80 раз рисунок (a), (c) — увеличенный в 100 раз фрагмент рисунка (a).

В качестве второго примера рассмотрена пара элементов водород (H) – углерод (C). Для нее графики функций $\Phi(\varphi)$, $\Phi_Z(\varphi)$ и единичная окружность в полярных координатах показаны на рис. 3 (a), (b), (c). Эта пара элементов может представлять гораздо больший практический интерес, поскольку число различных углеводородов весьма велико. Далее для этой пары приводятся результаты расчетов, относящихся к задаче идентификации.

Как видно, рис. 3 (а) значительно отличается от рис. 2 (с), и чтобы правильно представить себе картину в целом, его пришлось дополнить рисунками (b) и (с), сделанными в других масштабах. Данные для функции $\Phi_P(\varphi)$ и некоторые основные характеристики матрицы $A = A(E^{(p)})$ для этой пары приводятся в таблицах 3 и 4.

Таблица 3. Функция $\Phi_P(\varphi)$ для пары Водород – Углерод

$У$ гол φ ,	0° –	117° –	118°	119° –
градусы	116°			179°
Значение р	1	190	20	1

Множество различных значений функции $\Phi_P(\varphi)$ для пары водород – углерод состоит всего лишь из трех наборов $E^{(p)}$, причем $E^{(85)}$, для которого σ_1^{-1} минимальна,

среди них не присутствует. Таблица 4 аналогична таблице 2. Угол ψ для псевдоэллипса на рис. 3(a) равен 117°, половина диаметра (длина первой полуоси) псевдоэллипса равна 179, что заметно меньше всех значений σ_1^{-1} в таблице 4 и в пять с лишним раз меньше, чем σ_1^{-1} для $E^{(1)} = (E_1, E_2)$. При этом, заметим, что в таблице 3 значение p=1 соответствует почти всем углам.

Таблица 4. Некоторые основные характеристики матрицы $A = A(E^{(p)})$ для пары Водород – Углерод, для некоторых значений вектора $E^{(p)}$.

Набор	Длины полуосей $\sigma_1^{-1}, \ \ \sigma_2^{-1}$	Комментарий
энергий $E^{(k)}$	и угол наклона ψ	
$E^{(180)} = (E_{15}, E_{20})$	$\sigma_1^{-1} = 297.4, \ \sigma_2^{-1} = 15.8, \ \psi = 119.6^{\circ}$	$C_S = C_{Smin} = 18.82$
$E^{(85)} = (E_5, E_{20})$	$\sigma_1^{-1} = 230.7, \ \sigma_2^{-1} = 4.68, \ \psi = 116.9^{\circ}$	σ_1^{-1} минимальна
$E^{(1)} = (E_1, E_2)$	$\sigma_1^{-1} = 926.1, \ \sigma_2^{-1} = 2.24, \ \psi = 117.1^{\circ}$	σ_2^{-1} минимальна

Теперь вернемся к задаче 2. Рассмотрим сначала случай, когда в список Z входит лишь одно вещество Z_1 . Пусть $x_T^{(0)}, x_T^{(1)}$ — точки в пространстве решений \mathbb{R}^N , соответствующие X_0 и Z_1 (причем $x_T^{(0)}$ нам не известна), \widehat{a} — амплитуда погрешности прибора, так что для любого набора энергий $E^{(p)}, p \in P$, и в любой серии измерений выполняется неравенство $||b-b_T|| \leqslant \widehat{a}$. Пусть $x^{(0;p_1)}$ — (найденное с ошибкой) решение системы (5) по результатам просвечиваний вещества X_0 на некотором наборе энергий $E^{(p_1)}, \widehat{D}^{(p_1)} = [A(E^{(p_1)})]^{-1}\widehat{\Omega}, \ \Pi = \bigcap_{p \in P} \widehat{D}^{(p)}$ — см утверждение 4.

Утверждение 5. При вышеприведенных обозначениях справедливо следующее.

- а) Если для некоторого $p_1 \in P$ точка $x^{(0;p_1)} \notin x_T^{(1)} + \widehat{a}\widehat{D}^{(p_1)}$, то $x_T^{(0)} \neq x_T^{(1)}$ и $X_0 \neq Z_1$.
- b) Если для некоторого $p_1 \in P$ точка $x_T^{(0)} \notin x_T^{(1)} + 2\widehat{a}\widehat{D}^{(p_1)}$, то неравенство $X_0 \neq Z_1$ всегда устанавливается по результатам одной серии просвечиваний на наборе энергий $E^{(p_1)}$.
- c) Если $x_T^{(0)} \in \mathbb{R}^N \setminus (x_T^{(1)} + 2\widehat{a}\Pi)$, то неравенство $X_0 \neq Z_1$ всегда устанавливается по результатам одной серии просвечиваний на некотором наборе энергий $E^{(p)}$.

Доказательство. Пункт а) утверждения 5 следует из того, что при $x_T^{(0)} = x_T^{(1)}$ включение $x^{(0;p_1)} = x^{(1;p_1)} \in x_T^{(1)} + \widehat{a}\widehat{D}^{(p_1)}$ обязано выполняться для любого $p_1 \in P$ в силу определения \widehat{a} .

- b) Из условия $x_T^{(0)} \not\in x_T^{(1)} + 2\widehat{a}\widehat{D}^{(p_1)}$ следует, что в результате одной серии просвечиваний на наборе энергий $E^{(p_1)}$ всегда будет выполняться соотношение $x^{(0;p_1)} \not\in x_T^{(1)} + \widehat{a}\widehat{D}^{(p_1)}$, откуда, в силу того, что выполняется условие пункта а), следует утверждение b).
- с) В этом случае всегда найдется $p \in P$ такое, что $x_T^{(0)} \notin x_T^{(1)} + 2\widehat{a}\widehat{D}^{(p)}$, откуда в силу того, что выполняется условие пункта b) и следует c).

Таким образом, утверждение 5 а) дает достаточное условие, при выполнении которого устанавливается неравенство $X_0 \neq Z_1$. Что касается пунктов b) и c), то проверить выполнимость указанных в них условий до проведения серии просвечиваний

невозможно. Однако они весьма полезны, поскольку указывают на множество, каждая точка которого может быть "отделена" от точки $x_T^{(1)}$ за одну серию измерений, то есть установлено отличие вещества, соответствующего этой точке от вещества Z_1 .

В общем случае, когда список веществ $Z = \{Z_1, \dots, Z_M\}$ содержит несколько веществ, вышеописанную процедуру нужно провести для каждой пары $X_0 - Z_k$.

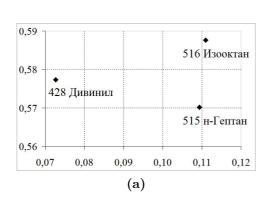
Если для некоторого k вещество X_0 совпадает с Z_k , то точно установить это за одну серию измерений можно лишь с помощью измерительного прибора, имеющего нулевую амплитуду погрешности.

Если $X_0 \neq Z_k$, но расстояние между $x_T^{(0)}$ и $x_T^{(k)}$ слишком мало, то можно провести несколько повторных серий измерений. Если при этом точка $x^{(0)}$ попадет в достаточно маленькую окрестность точки B (см рис.1), то неравенство $X_0 \neq Z_k$ будет все-таки установлено.

4. Некоторые примеры

Проиллюстрируем предложенный метод частичной идентификации химического состава среды на примере углеводородов и сравним его с методом идентификации через решение задачи химии. Необходимые для этого физико-химические данные были взяты главным образом из [14].

На рис. 4 (a), (b) представлены фрагменты пространства решений, содержащие координаты некоторых углеводородов. Целые числа перед названиями веществ соответствуют условным номерам веществ в базе данных; в пространстве решений этим веществам соответствуют точки $x^{(425)}$, $x^{(451)}$ и т.д.



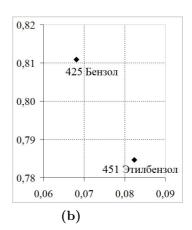


Рис. 4. (a), (b) — фрагменты пространства решений, содержащие координаты некоторых углеводородов.

Далее рассмотрим две пары веществ, в которых первое вещество будем предполагать неизвестным (это X_0 и $x^{(0)}$ в старых обозначениях), а второе — известным (это Z_1 и $x^{(1)}$).

Для первой пары $(x^{(428)}, x^{(516)})$ — это 428. Дивинил C_4H_6 и 516. Изооктан $(CH_3)_3CCH_2CH(CH_3)_2$. В результате расчетов получено следующее. Угол наклона φ_1 вектора $(x^{(516)}-x^{(428)})$ к оси x_1 $\varphi_1=15.08^\circ, ||x^{(516)}-x^{(428)}||=3.965\cdot 10^{-02},$ $\Phi(\varphi_1)=0.435, \Phi_P(\varphi_1)=E^{(1)}=(E_1,E_2)=(0.1 \text{ Mev}, 0.15 \text{ Mev})$. Значение a_1^* — см. (25) — это амплитуда погрешности прибора, при которой точка $x^{(1)}$ попадает на границу эллипсоида $x^{(0)}+\widehat{D}^{(1)}$ $a_1^*=||x^{(516)}-x^{(428)}||\cdot\Phi(\varphi_1)=1.726\cdot 10^{-02}$.

Для второй пары $(x^{(451)}, x^{(425)})$ — это 451. Этилбензол $C_6H_5C_2H_5$ и 425. Бензол C_6H_6 . В результате расчетов получены другие данные. Угол наклона φ_2 вектора $(x^{(425)}-x^{(451)})$ к оси x_1 $\varphi_2=118.5^\circ$, $||x^{(425)}-x^{(451)}||=2.988\cdot 10^{-02}$, $\Phi(\varphi_2)=1.136\cdot 10^{-02}$, $\Phi_P(\varphi_2)=E^{(20)}=(E_2,E_3)=(0.15 \text{ MeV},\ 0.2 \text{ MeV})$. Значение a_2^* , при котором точка $x^{(1)}$ попадает на границу эллипсоида $x^{(0)}+\widehat{D}^{(20)}$ $a_2^*=||x^{(425)}-x^{(451)}||\cdot\Phi(\varphi_2)=3.393\cdot 10^{-04}$.

Сравнивая результаты расчетов для первой и второй пары, получаем $\Phi(\varphi_1)/\Phi(\varphi_2)=38.329;~a_1^*/a_2^*=50.86$ Первое число означает, что чувствительность метода для угла φ_1 в 38.329 раз больше, чем для угла φ_2 . Второе число означает, что "различить" пару 428. Дивинил — 516. Изооктан в 50.86 раз легче, чем пару 451. Этилбензол — 425. Бензол.

Теперь сравним $\Phi(\varphi_1)$ и $\Phi(\varphi_2)$ с удвоенной максимально допустимой амплитудой погрешности прибора, которая необходима для отличия двух различных веществ, состоящих из водорода и углерода, путем решения задачи 1 (задачи химии) при условии, что для них $||x^{(1)}-x^{(0)}||=1$. Обозначим эту амплитуду через K_X . В этом случае мы должны использовать тот набор $E^{(p)}$, при котором σ_1^{-1} минимальна, а именно, набор $E^{(85)}$, поскольку он дает минимальную норму ошибки решения, которая при единичной норме возмущения правой части равна $\sigma_1^{-1}=230.7$. Тогда $K_X=1/\sigma_1^{-1}=\sigma_1=4.3346\cdot 10^{-03}, \ \Phi(\varphi_1)/K_X=100.36, \ \Phi(\varphi_2)/K_X=2.6208$.

Последние два числа означают, что в предельной ситуации (различимость "на грани возможного") для различения первой пары веществ методом идентификации достаточно точности измерительного прибора в 100 раз меньшей, чем требуется согласно методу нахождения химического состава. Для различения второй пары пары веществ достаточно точности в 2.6 раз меньшей.

Отсюда видно, что решение задачи идентификации через решение задачи химии невыгодно в обеих случаях.

Заключение

Из приведенных здесь примеров для конкретных веществ, относящихся к случаю N=2 видно, что предложенный метод частичной идентификации вещества путем использования индикатора различимости веществ $\Phi(\varphi_1)$ и последующего решения системы уравнений (5) может оказаться весьма эффективным. В то же время видно, что степень этой эффективности сильно зависит от расположения сравниваемых веществ X_0 и Z_1 , а конкретнее — от угла между первой псевдоосью L_1 и вектором $x^{(1)}-x^{(0)}$. Проведенные ранее исследования для ряда наборов химических элементов показали, что с ростом N минимальная длина N-й полуоси $\min_{p\in P}\left\{\left(\sigma_N^{(p)}\right)^{-1}\right\}$ эллипсоидов уменьшается, поэтому есть основание полагать, что с ростом N эффективность предложенного метода будет только возрастать. Учитывая то, что с

ростом N количество различных веществ, используемых на практике, стремительно увеличивается, представляется полезным продолжить данные исследования.

Список литературы

- [1] Sergei Osipov, Sergei Chakhlov, Andrey Batranin, Oleg Osipov, Van Bak Trinh, Juriy Kytmanov, "Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography", NDT and E International, 98, (2018), 63–69.
- [2] S. P. Osipov, V. A. Udod, Yanzhao Wang, "Identification of Materials in X-Ray Inspections of Objects by the Dual-Energy Method", Russian Journal of Nondestructive Testing, 53:8, (2017), 568–587.
- [3] В. А. Клименов, С. П. Осипов, А. К. Темник, "Идентификация вещества объекта контроля методом дуальных энергий", Дефектоскопия, 11, (2013), 40–50.
- [4] J. H. Hubbell, S. M. Seltzer, Tables of X Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint NISTIR-5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995.
- [5] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, "XCOM: Photon Cross Section Database. National Institute of Standards and Technology. Gaithersburg. MD.", 2005, http://www.physics.nist.gov/xcom.
- [6] Д. С. Аниконов, А. Е. Ковтанюк, И. В. Прохоров, Использование уравнения переноса в томографии, Логос, М., 2000.
- [7] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht-Boston, 2002.
- [8] В. Г. Назаров, "О повышении точности вычислений в задаче нахождения химического состава среды", Дальневосточный математический журнал, 18:2, (2018), 219–232.
- [9] В. Г. Назаров, "Метод сингулярного разложения матрицы в задаче нахождения химического состава среды", Сибирские электронные математические известия, 14, (2017), 821–837.
- [10] В. Г. Назаров, "Выбор оптимальных значений энергии излучения в задаче нахождения химического состава среды", *Математическое моделирование*, **30**, (2018), 91–102.
- [11] С. К. Годунов, А.Г. Антонов, О.П. Кирилюк, В.И. Костин, Гарантированная точность решения систем линейных уравнений в евклидовых пространствах, Наука. Сиб. отд-ние, Новосибирск, 1988.
- [12] Дж. Форсайт, М. Малькольм, К. Моулер, Машинные методы математических вычислений, Мир, М., 1980.
- [13] D.S. Anikonov, "Integro-differential heterogeneity indicator in tomography problem", J.Inv.Ill-Posed Problems, 7:1, (1999), 17–59.
- [14] А.И. Волков, И.V. Жарский, Большой химический справочник, Современная школа, Минск, 2005.

Поступила в редакцию 26 февраля 2019 г.

Nazarov V. G. Problem of partial identification of unknown medium. Far Eastern Mathematical Journal. 2019. V. 19. No 1. P. 43–62.

ABSTRACT

The paper deals with the problem of partial identification of an unknown medium chemical composition by the method of repeated scanning of this medium by collimated x-ray flux. A mathematical model for the problem of identification is formulated and its comparison with the task of finding the chemical composition of the medium carried out. A method for solving the problem of identification is based on the construction of a special function, called the indicator of distinguishability of substances. By way of illustration, results of calculations performed for various specific groups of chemical elements are presented.

Key words: radiography of a continuous medium, identification the chemical composition of a substance, singular value decomposition, calculation accuracy.