(c) N. Budarina, F. Götze ${ }^{1}$

On regular systems of algebraic p-adic numbers of arbitrary degree in small cylinders

In this paper we prove that for any sufficiently large $Q \in \mathbb{N}$ there exist cylinders $K \subset \mathbb{Q}_{p}$ with Haar measure $\mu(K) \leq \frac{1}{2} Q^{-1}$ which do not contain algebraic p-adic numbers α of degree $\operatorname{deg} \alpha=n$ and height $H(\alpha) \leq Q$. The main result establishes in any cylinder $K, \mu(K)>c_{1} Q^{-1}, c_{1}>c_{0}(n)$, the existence of at least $c_{3} Q^{n+1} \mu(K)$ algebraic p-adic numbers $\alpha \in K$ of degree n and $H(\alpha) \leq Q$.
Key words: integer polynomials, algebraic p-adic numbers, regular system, Haar measure.

1 Introduction

The concept of a regular system of points is a convenient tool for the study of the uniform distribution of algebraic numbers. Regular systems were introduced by Baker and Schmidt [1] as a technique for obtaining a lower bound for the Hausdorff dimension of sets of real numbers close to infinitely many points of the set of algebraic numbers of bounded degree.

Definition 1. Let Γ be a countable set of real numbers and let $N: \Gamma \rightarrow \mathbb{R}$ be a positive function. The pair (Γ, N) is called a regular system of points if there exists a constant $C=C(\Gamma, N)>0$ such that for any finite interval I there exists a sufficiently large number $T_{0}=T_{0}(\Gamma, N, I)$ such that for any integer $T \geq T_{0}$ there exists a collection $\gamma_{1}, \ldots, \gamma_{\mathbf{t}} \in \Gamma \cap I$ such that $N\left(\gamma_{i}\right) \leq T(1 \leq i \leq \mathbf{t}),\left|\gamma_{i}-\gamma_{j}\right| \geq T^{-1}(1 \leq i<j \leq \mathbf{t})$, and $\mathbf{t} \geq C|I| T$.

Regular systems play the key role in the proof of the divergence case in the KhintchineGroshev type theorems [2, 3, 4, 5] and obtaining lower bounds for the Hausdorff dimension of sets of number theoretic interest [1, 6, 7, 8, ,9, 10.

[^0]Y. Bugeaud in [11] stated the problem on finding an explicit dependence of T_{0} on the length of the interval I. In [11] it is shown that for a given finite interval I in $[-1 / 2,1 / 2]$ the value of $T_{0}(\Gamma, N, I)$ in the definition of regular system is equal to
$$
T_{0}(\mathbb{Q}, N, I)=10^{4}|I|^{-2} \log ^{2} 100|I|^{-1}
$$
for $\Gamma=\mathbb{Q}$, and in [12] that
$$
T_{0}\left(A_{2}, N, I\right)=72^{3}|I|^{-3} \log ^{3} 72|I|^{-1}
$$
for $\Gamma=A_{2}$, where A_{n} is the set of real algebraic numbers of degree n. Throughout $c_{1}=c_{1}(n), c_{2}=c_{2}(n), \ldots$ are constants depending only on n. In [13] it is shown that $T_{0}\left(A_{3}, N, I\right)=c_{1}|I|^{-4-\epsilon}, 0<\epsilon<1$. There is a more strong connection between I and $T_{0}\left(A_{n}, N, I\right)$, namely $T_{0}\left(A_{n}, N, I\right)=c_{2}|I|^{-(n+1)}$, see [14]. In this paper, we address the problem of Bugeaud for the p-adic algebraic numbers of arbitrary degree n.

The Haar measure of a measurable set $S \subset \mathbb{Q}_{p}$ is denoted by $\mu(S)$. Let \mathcal{A}_{p} be the set of all algebraic numbers and \mathbb{Q}_{p}^{*} be the extension of \mathbb{Q}_{p} containing \mathcal{A}_{p}. The cylinder in \mathbb{Q}_{p} of radius r centered at α is the set of solutions of the inequality $|w-\alpha|_{p} \leq r$. Denote by $\mathcal{A}_{n, p}$ the set of algebraic numbers of degree n lying in \mathbb{Z}_{p}. Fix any finite cylinder K_{0} in \mathbb{Z}_{p}. The natural number $H(\alpha)$ denotes the naive height of $\alpha \in \mathcal{A}_{p}$, i.e. the maximum absolute value of the coefficients of the minimal integer polynomial of α. We will also use the Vinogradov symbol $f \ll g$ which means that there exists a constant $c>0$ such that $f \leq c g$.

Theorem 1. Let K be a finite cylinder in K_{0}. Then there are positive constants c_{3}, c_{4} and a positive number $T_{0}=c_{3} \mu(K)^{-(n+1)}$ such that for any $T \geq T_{0}$ there exist numbers $\alpha_{1}, \ldots, \alpha_{\mathbf{t}} \in \mathcal{A}_{n, p} \cap K$ such that

$$
\begin{gather*}
H\left(\alpha_{i}\right) \leq T^{1 /(n+1)}(1 \leq i \leq \mathbf{t}) \\
\left|\alpha_{i}-\alpha_{j}\right|_{p} \geq T^{-1}(1 \leq i<j \leq \mathbf{t}) \tag{1}\\
\mathbf{t} \geq c_{4} T \mu(K)
\end{gather*}
$$

Note that from Theorem 1 it follows that the set $\mathcal{A}_{n, p}$ with the function $N(\alpha)=$ $H^{n+1}(\alpha)$ form a regular system in K_{0}.

For $\bar{Q} \in \mathbb{R}^{+}$define the set of polynomials

$$
\begin{equation*}
\mathcal{P}_{n}(\bar{Q})=\{P \in \mathbb{Z}[x]: \operatorname{deg} P=n, \quad H(P) \leq \bar{Q}\} \tag{2}
\end{equation*}
$$

To prove Theorem 1 it is convenient to introduce the following set. Let $Q \in \mathbb{N}$ and $\delta, d_{n}, c_{5} \in \mathbb{R}^{+}$. We denote by $\overline{\mathcal{L}}_{n}=\overline{\mathcal{L}}_{n}\left(c_{6} Q^{r_{n}}, \delta, K\right)$ the set of $w \in K$ for which the system of the inequalities

$$
\begin{equation*}
|P(w)|_{p}<c_{5} Q^{-d_{n}}, \quad\left|P^{\prime}(w)\right|_{p} \leq \delta \tag{3}
\end{equation*}
$$

has a solution in polynomials $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$, where $c_{6} \in \mathbb{R}^{+}$and $0 \leq r_{n} \leq 1$. The proof of Theorem 1 is based on the following metric result which significantly broadens the scope of potential applications and is of independent interest.

Theorem 2. For any real number l, where $0<l<1$, and for any cylinder K in $K_{0} \subset \mathbb{Z}_{p}$ there exists a sufficiently large number $Q_{0}=Q_{0}(K)$ such that for

$$
\mu(K)>c_{7} Q_{0}^{-1}, \quad d_{n} \geq n+r_{n}, \quad \delta \leq 2^{-n-9} p^{-2} c_{6}^{-n-1} c_{5}^{-1} l^{2}(s(n))^{-2}
$$

and a sufficiently large constant c_{7}, which does not depend on Q_{0}, and for all $Q>Q_{0}$

$$
\begin{equation*}
\mu\left(\overline{\mathcal{L}}_{n}\right)<l \mu(K) \tag{4}
\end{equation*}
$$

holds.
Remark 1. The constant $s(n) \in \mathbb{N}$ is defined recursively in (65) and has the form

$$
s(n)= \begin{cases}2 & \text { for } n=1 \\ 14 & \text { for } n=2 \\ 2 n+13+\sum_{k=3}^{n-1} s(k)+\sum_{k=1}^{[n / 2]}(4 s(k)+3 s(n-k)) & \text { for } n \geq 3\end{cases}
$$

From above it follows that the cylinder K with $\mu(K)>c_{7} Q^{-1}$ for sufficiently large c_{7} and sufficiently large Q contains $\gg Q^{n+1} \mu(K)$ algebraic p-adic numbers of degree n and $H(\alpha) \leq Q$. Note that if $\mu(K) \leq \frac{1}{2} Q^{-1}$ then we have the following result which is a complement of Theorem 1 in some sense.

Theorem 3. For any $Q \in \mathbb{N}$ there exist the cylinders K with $\mu(K) \leq \frac{1}{2} Q^{-1}$ which do not contain algebraic numbers $\alpha \in \mathbb{Q}_{p}$ of degree $\operatorname{deg} \alpha=n$, $n \geq 2$, and $H(\alpha) \leq Q$.

2 Proof of Theorem 3

For the given Q choose $s \in \mathbb{N}$ satisfying the inequality $p^{-s}<\frac{1}{2} Q^{-1}$. Consider the cylinder $K=K\left(p^{s}, \frac{1}{2} Q^{-1}\right)$. Let $\alpha \in K$ be an algebraic number of degree $\operatorname{deg} \alpha=n$, $n \geq 2$, and $H(\alpha) \leq Q$. It means that $\alpha \in \mathbb{Q}_{p}, \alpha \neq 0$, is a root of irreducible polynomial $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$. If we assume that $a_{0}=0$ then from $P(\alpha)=0$ it follows that $\alpha\left(\sum_{i=1}^{n} a_{i} \alpha^{i-1}\right)=0$. The last equation implies that α is a root of polynomial $P_{1}(x)=$ $\sum_{i=1}^{n} a_{i} x^{i-1}$ of $\operatorname{deg} P_{1} \leq n-1$ which contradicts to the fact that $\operatorname{deg} \alpha=n$. Therefore, $a_{0} \neq 0$ and from

$$
a_{0}=-\alpha \sum_{i=1}^{n} a_{i} \alpha^{i-1}
$$

we obtain

$$
Q^{-1} \leq\left|a_{0}\right|_{p} \leq|\alpha|_{p} \max _{1 \leq i \leq n}\left|a_{i} \alpha^{i-1}\right|_{p} \leq \frac{1}{2} Q^{-1}
$$

which is a contradiction. This completes the proof of Theorem 3 .

3 Proof of Theorem 2

By translation and taking the reciprocals (if necessary) each polynomial P can be transformed into a polynomial R satisfying

$$
\begin{equation*}
\left|a_{n}(R)\right|_{p}>c_{8}, \quad c_{8}<1 \tag{5}
\end{equation*}
$$

and $H(R) \asymp H(P)$, see [15]. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the roots of the polynomial $P \in \mathbb{Z}[x]$ of degree n in \mathbb{Q}_{p}^{*}. Define the sets

$$
S_{P}\left(\alpha_{i}\right)=\left\{w \in \mathbb{Q}_{p}:\left|w-\alpha_{i}\right|_{p}=\min _{1 \leq j \leq n}\left|w-\alpha_{j}\right|_{p}\right\}, \quad i=1, \ldots, n
$$

We will consider the sets $S_{P}\left(\alpha_{i}\right)$ for a fixed i. For simplicity we assume that $i=1$. Reorder the other roots of P so that

$$
\left|\alpha_{1}-\alpha_{2}\right|_{p} \leq\left|\alpha_{1}-\alpha_{3}\right|_{p} \leq \ldots \leq\left|\alpha_{1}-\alpha_{n}\right|_{p}
$$

For the polynomial P define the real numbers ρ_{j} by

$$
\left|\alpha_{1}-\alpha_{j}\right|_{p}=H(P)^{-\rho_{j}}, \quad 2 \leq j \leq n, \quad \rho_{2} \geq \rho_{3} \geq \ldots \geq \rho_{n} .
$$

Let $\epsilon>0$ be sufficiently small, $d>0$ be a large fixed number, $\epsilon_{1}=\epsilon / d$ and $M=\left[\epsilon_{1}^{-1}\right]+1$. Also, define the integers $l_{j}, 2 \leq j \leq n$, by the relations

$$
\frac{l_{j}-1}{M} \leq \rho_{j}<\frac{l_{j}}{M}, \quad l_{2} \geq l_{3} \geq \ldots \geq l_{n} \geq 0
$$

Finally, define the numbers q_{i} by $q_{i}=\frac{l_{i+1}+\ldots+l_{n}}{M},(1 \leq i \leq n-1)$. All irreducible polynomials $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (5) and corresponding to the same vector $\mathbf{l}=$ $\left(l_{2}, \ldots, l_{n}\right)$ are grouped together into a class $\mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{l}\right)$, and the number of such classes is finite and depends only on n and ϵ_{1}, i.e. is at most $C\left(n, \epsilon_{1}\right)$, see [15]. Also, we define the class $\mathcal{P}_{n}(\mathbf{l})$ to consist of all irreducible polynomials $P \in \mathbb{Z}[x]$ of degree n satisfying (5) and corresponding to a vector \mathbf{l}. In 3.2 we fix the vector 1 and will continue the proof for this fixed vector.

A number of lemmas for later use are now given.
Lemma 1. [5] Let P be a polynomial without multiple zeros and let $w \in S_{P}\left(\alpha_{1}\right)$, then

$$
\begin{gather*}
\left|w-\alpha_{1}\right|_{p} \leq|P(w)|_{p}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1} \tag{6}\\
\left|w-\alpha_{1}\right|_{p} \leq \min _{2 \leq j \leq n}\left(|P(w)|_{p}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1} \prod_{k=2}^{j}\left|\alpha_{1}-\alpha_{k}\right|_{p}\right)^{\frac{1}{j}} \tag{7}
\end{gather*}
$$

Lemma 2. [5] Let $w \in S_{P}\left(\alpha_{1}\right)$ and $\left|P^{\prime}(w)\right|_{p} \neq 0$, then $\left|w-\alpha_{1}\right|_{p} \leq|P(w)|_{p}\left|P^{\prime}(w)\right|_{p}^{-1}$.
Lemma 3. [5] Let $P \in \mathcal{P}_{n}(\mathbf{1})$ satisfying (5). Then

$$
\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}>c(n) H(P)^{-q_{1}} \quad \text { and }\left|P^{(l)}\left(\alpha_{1}\right)\right|_{p} \leq H(P)^{-q_{l}+(n-l) \epsilon_{1}}, 1 \leq l \leq n-1 .
$$

Lemma 4. [16] Let $\theta>0$ and $Q>Q_{0}(\theta)$. Further, let P_{1} and P_{2} be two integer polynomials of degree at most n with no common roots and $\max \left(H\left(P_{1}\right), H\left(P_{2}\right)\right) \leq Q$. Let $J \subset \mathbb{Q}_{p}$ be a cylinder with $\mu(J)=Q^{-\eta}, \eta>0$. If there exists $\tau>0$ such that for all $w \in J$

$$
\left|P_{j}(w)\right|_{p}<Q^{-\tau},
$$

for $j=1,2$, then

$$
\begin{equation*}
\tau+2 \max (\tau-\eta, 0)<2 n+\theta \tag{8}
\end{equation*}
$$

Lemma 5. Let $K \subset \mathbb{Q}_{p}$ be a cylinder and $B \subset K$ be a measurable set satisfying $\mu(B) \geq k^{-1} \mu(K)>0, k \in \mathbb{N}$. Assume that for all $w \in B$ we have $|P(w)|_{p}<H(P)^{-a}$, where $a>0$ and $\operatorname{deg} P \leq n$. Then for all $w \in K$ we have

$$
|P(w)|_{p}<(p k(n+1))^{n+1} H(P)^{-a} .
$$

Proof. Let $\alpha=a_{0}+a_{1} p+\ldots+a_{l} p^{l}$ be center of the cylinder K. Then $K=\{w \in$ $\left.\mathbb{Q}_{p}:|w-\alpha|_{p} \leq p^{-(l+1)}\right\}$ with $\mu(K)=p^{-(l+1)}$ and $w=\alpha+a_{l+1} p^{l+1}+\ldots$ Choose s such that

$$
\begin{equation*}
k^{-1} p^{s}>n+1 \tag{9}
\end{equation*}
$$

Consider the cylinders $K\left(w_{i}\right)$:

$$
K\left(w_{i}\right)=K\left(a_{l+1}, a_{l+2}, \ldots, a_{l+s}\right)=\left\{w \in \mathbb{Q}_{p}:\left|w-\left(\alpha+\sum_{i=1}^{s} a_{l+i} p^{l+i}\right)\right|_{p} \leq p^{-(l+s+1)}\right\} .
$$

It is clear that $\# K\left(w_{i}\right)=p^{s}$ and $K=\cup_{w_{i}} K\left(w_{i}\right)$, where $K\left(w_{t}\right) \cap K\left(w_{m}\right)=\emptyset$ for $t \neq m$. Let $B=K\left(w_{i_{1}}\right) \cup K\left(w_{i_{2}}\right) \cup \ldots \cup K\left(w_{i_{r}}\right)$. Then

$$
k^{-1} \mu(K) \leq \mu(B)=r \mu\left(K\left(w_{i}\right)\right)=r p^{-(l+s+1)}=r p^{-s} \mu(K)
$$

and $r \geq k^{-1} p^{s}$. In the different cylinders $K\left(w_{i_{u}}\right)$ and $K\left(w_{i_{v}}\right), u \neq v$, there exists a coordinate a_{q} of the vector $\mathbf{b}_{l, s}=\left(a_{l+1}, a_{l+2}, \ldots, a_{l+s}\right)$ such that $a_{q}\left(K\left(w_{i_{u}}\right)\right) \neq$ $a_{q}\left(K\left(w_{i_{v}}\right)\right), l+1 \leq q \leq l+s$. Therefore,

$$
\left|w_{u}-w_{v}\right|_{p} \geq p^{-(l+1+s)}
$$

where $w_{u} \in K\left(w_{i_{u}}\right)$ and $w_{v} \in K\left(w_{i_{v}}\right)$. Condition (9) allows us to choose at least $n+1$ such points w_{j}.

Rewrite P as the interpolation polynomial in the Lagrange form

$$
P(w)=\sum_{l=1}^{n+1} d_{l} \frac{\left(w-w_{1}\right) \ldots\left(w-w_{l-1}\right)\left(w-w_{l+1}\right) \ldots\left(w-w_{n+1}\right)}{\left(w_{l}-w_{1}\right) \ldots\left(w_{l}-w_{l-1}\right)\left(w_{l}-w_{l+1}\right) \ldots\left(w_{l}-w_{n+1}\right)}
$$

where $d_{l}=P\left(w_{l}\right)$. Since $\left|w-w_{i}\right|_{p} \leq \mu(K)$ for all $w \in K$ and $\left|P\left(w_{l}\right)\right|_{p}<H(P)^{-a}$ then

$$
|P(w)|_{p}<p^{s(n+1)} H(P)^{-a} .
$$

Take $s=\log _{p} k(n+1)+1=\log _{p} p k(n+1)$ then $|P(w)|_{p}<(p k(n+1))^{n+1} H(P)^{-a}$ for all $w \in K$.

Let $t \in(0,1)$ be a sufficiently small number which we will specify later.

Lemma 6. Denote by $L=L\left(c_{9} Q^{r_{1}}, K\right)$ the set of $w \in K, \mu(K)>c_{7} Q^{-1}$, for which the system of the inequalities

$$
\begin{equation*}
|a w-b|_{p}<c_{10} Q^{-d_{1}}, \max (|a|,|b|)<c_{9} Q^{r_{1}}, \quad|a|_{p} \leq c_{11} Q^{-v}, \tag{10}
\end{equation*}
$$

has a solution in linear polynomials $a w-b \in \mathcal{P}_{1}\left(c_{9} Q^{r_{1}}\right)$, where the parameters $d_{1} \geq 1$, $0 \leq r_{1} \leq 1, v \geq 0$ and constants $c_{i}>0$ satisfy one of the conditions:

> i) $d_{1}>1+r_{1}, \quad v \geq r_{1}-1$,
> ii) $d_{1}=2, \quad r_{1}=1, \quad v=0, \quad c_{7} \geq 2^{2} c_{9} c_{10} t^{-1}, \quad 2^{3} c_{10} c_{9}^{2} c_{11} \leq t$,
> iii) $d_{1}=1+r_{1}, \quad v>r_{1}-1, \quad c_{7} \geq 2^{2} c_{9} c_{10} t^{-1}$.

Then $\mu(L)<2 t \mu(K)$ for Q sufficiently large.
Proof. Let $a=p^{\beta} a_{1}$ and $b=p^{\beta} b_{1}$, where $\left(a_{1}, p\right)=1, p^{-\beta} \leq c_{11} Q^{-v}, b_{1} \in \mathbb{Z}$. Thus, we can rewrite (10) in the form

$$
\begin{equation*}
\left|a_{1} w-b_{1}\right|_{p}<p^{\beta} c_{10} Q^{-d_{1}}, \quad\left|a_{1}\right|<c_{9} p^{-\beta} Q^{r_{1}} . \tag{11}
\end{equation*}
$$

Now the measure of $w \in K$ for which the system (11) holds is estimated. For fixed a_{1} and b_{1} the first inequality in (11) holds for points $w \in K$ from the cylinder

$$
\begin{equation*}
\left|w-b_{1} / a_{1}\right|_{p}<p^{\beta}\left|a_{1}\right|_{p}^{-1} c_{10} Q^{-d_{1}}=p^{\beta} c_{10} Q^{-d_{1}} . \tag{12}
\end{equation*}
$$

Then we need to sum the last estimate over all a_{1} and b_{1} such that $b_{1} / a_{1} \in K$, where $\left|a_{1}\right|<c_{9} p^{-\beta} Q^{r_{1}}$. For a fixed a_{1} denote by $M_{K}\left(a_{1}\right)$ the number of such points b_{1}. For $M_{K}\left(a_{1}\right)$ the following formula holds:

$$
M_{K}\left(a_{1}\right) \leq\left\{\begin{array}{lll}
\left|a_{1}\right| \mu(K)+1 \leq 2\left|a_{1}\right| \mu(K) & \text { if } & \left|a_{1}\right| \geq \mu(K)^{-1} \tag{13}\\
1 & \text { if } & \left|a_{1}\right|<\mu(K)^{-1}
\end{array}\right.
$$

Let $\left|a_{1}\right| \geq \mu(K)^{-1}$ and we use the first estimate in (13). Using $p^{-\beta} \leq c_{11} Q^{-v}$, we obtain

$$
\begin{gather*}
\sum_{\left|a_{1}\right|<c_{9} p^{-\beta} Q^{r_{1}}} \sum_{b_{1}: b_{1} / a_{1} \in K} p^{\beta} c_{10} Q^{-d_{1}}<2^{3} p^{-\beta} c_{10} c_{9}^{2} Q^{2 r_{1}-d_{1}} \mu(K) \leq \tag{14}\\
\leq 2^{3} c_{10} c_{9}^{2} c_{11} Q^{2 r_{1}-d_{1}-v} \mu(K) \leq t \mu(K)
\end{gather*}
$$

for $2 r_{1}-d_{1}-v<0$ and $Q>Q_{0}$ or $2 r_{1}-d_{1}-v=0$ and $2^{3} c_{10} c_{9}^{2} c_{11} \leq t$.
Let $\left|a_{1}\right|<\mu(K)^{-1}$ and we use the second estimate in 13). Summing over a_{1} and b_{1} we get

$$
\begin{align*}
& \sum_{\left|a_{1}\right|<c_{9} p^{-\beta} Q^{r_{1}}} \sum_{b_{1}: b_{1} / a_{1} \in K} p^{\beta} c_{10} Q^{-d_{1}}<4 c_{10} c_{9} Q^{r_{1}-d_{1}}< \tag{15}\\
& <4 c_{10} c_{9} c_{7}^{-1} Q^{1+r_{1}-d_{1}} \mu(K) \leq t \mu(K)
\end{align*}
$$

for $1+r_{1}-d_{1}<0$ and $Q>Q_{0}$ or $1+r_{1}-d_{1}=0$ and $c_{7} \geq 2^{2} t^{-1} c_{9} c_{10}$.
Now consider the special case when $r_{n}=0$. Denote by $L_{0}=L_{0}\left(c_{6}, K\right)$ the set of $w \in K, \mu(K)>c_{7} Q^{-1}$, for which the system

$$
\begin{equation*}
|P(w)|_{p}<c_{5} Q^{-d_{n}}, \quad d_{n} \geq n \tag{16}
\end{equation*}
$$

has a solution in $P \in \mathcal{P}_{n}\left(c_{6}\right)$. Let $\sigma^{\prime}(P)$ denote the set of w of (16) for a fixed polynomial $P \in \mathcal{P}_{n}\left(c_{6}\right)$. Let $w \in \sigma^{\prime}(P) \cap S_{P}\left(\alpha_{1}\right)$ for some $P \in \mathcal{P}_{n}\left(c_{6}\right)$. Then by (16) and Lemma1, we have

$$
\left|w-\alpha_{1}\right|_{p}<\left(c_{5} c_{8}^{-1} Q^{-d_{n}}\right)^{1 / n}
$$

Summing the last estimate over all polynomials $P \in \mathcal{P}_{n}\left(c_{6}\right)$, we get

$$
\mu\left(L_{0}\right)<n c_{5}^{1 / n}\left(2 c_{6}+1\right)^{n+1} c_{8}^{-1 / n} Q^{-d_{n} / n} \leq t \mu(K)
$$

for $c_{7} \geq c_{5}^{1 / n}\left(2 c_{6}+1\right)^{n+1} c_{8}^{-1 / n} t^{-1} n$. From now on assume that $r_{n}>0$.
Note that we will prove Theorem 2 by strong induction with the following induction hypothesis: assume that for $1 \leq m \leq n-1$ the following

$$
\mu\left(\begin{array}{ll}
& |P(w)|_{p}<m_{1} Q^{-d_{m}}, \\
w \in K: \exists P \in \mathcal{P}_{m}\left(m_{2} Q^{r_{m}}\right) \text { s.t. } & \left|P^{\prime}(w)\right|_{p} \leq \delta, \\
d_{m} \geq m+r_{m}, \\
& \delta \leq 2^{-m-9} p^{-2} m_{1}^{-1} m_{2}^{-(m+1)} t^{2}
\end{array}\right)<s(m) t \mu(K)
$$

holds for sufficiently large c_{7} and sufficiently large Q, where $\mu(K)>c_{7} Q^{-1}$ and $s(m) \in \mathbb{N}$ is constant depending on the degree m of a polynomial. The base case for $m=1$ with $s(1)=2$ follows from Lemma 6 .

3.1 Case of large derivative

Define the subset $\tilde{\mathcal{L}}_{n}$ of the set $\overline{\mathcal{L}}_{n}$ containing $w \in K$ for which there exists polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ such that the system

$$
\begin{equation*}
|P(w)|_{p}<c_{5} Q^{-d_{n}}, \quad p c_{5}^{1 / 2} Q^{-d_{n} / 2}<\left|P^{\prime}(w)\right|_{p} \leq \delta \tag{17}
\end{equation*}
$$

holds.
Denote by $\sigma_{0}(P)$ the set of solutions w of the system (17) for a fixed polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$. Then we have $\tilde{\mathcal{L}}_{n}=\underset{P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)}{\bigcup} \sigma_{0}(P)$. Let $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ and $w \in$ $\sigma_{0}(P) \cap S_{P}\left(\alpha_{1}\right)$ where $P\left(\alpha_{1}\right)=0$. By the Taylor's formula

$$
P^{\prime}(w)=\sum_{i=1}^{n}((i-1)!)^{-1} P^{(i)}\left(\alpha_{1}\right)\left(w-\alpha_{1}\right)^{i-1} .
$$

Using $\left|w-\alpha_{1}\right|_{p}<c_{5} Q^{-d_{n}}\left|P^{\prime}(w)\right|_{p}^{-1}$ from Lemma 1 and estimating each term gives

$$
\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}=\left|P^{\prime}(w)\right|_{p}
$$

Therefore, the set $\sigma_{0}(P) \cap S_{P}\left(\alpha_{1}\right)$ is contained in $\sigma(P)$ which is defined by

$$
\begin{equation*}
\left|w-\alpha_{1}\right|_{p}<c_{5} Q^{-d_{n}}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1} \tag{18}
\end{equation*}
$$

Further to obtain the measure of $\tilde{\mathcal{L}}_{n}$ it is necessary to consider several cases which depend on the value of $\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}$ in the range $\left(p c_{5}^{1 / 2} Q^{-d_{n} / 2}, \delta\right]$.
3.1.1 Case A: $2^{(n+1) / 2} p c_{6}^{(n-2) / 2} c_{5}^{1 / 2} t^{-1 / 2} Q^{-\left(2+r_{n}\right) / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq \delta$

Define the subset $\mathcal{L}_{n 1}$ of the set $\tilde{\mathcal{L}}_{n}$ for which there exists at least one polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (17) and the inequality

$$
\begin{equation*}
Q^{-r_{n} / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq \delta, \tag{19}
\end{equation*}
$$

where α_{1} is the closest root to w of P.
Proposition 1. For $\delta \leq 2^{-n-5} c_{6}^{-n-1} c_{5}^{-1} t^{2}$ and sufficiently large constant c_{7} and sufficiently large Q we have

$$
\mu\left(\mathcal{L}_{n 1}\right)<3 t \mu(K) .
$$

Proof. For a polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ define the cylinder

$$
\begin{equation*}
\sigma_{1,1}(P):=\left\{w \in S_{P}\left(\alpha_{1}\right) \cap K:\left|w-\alpha_{1}\right|_{p}<c_{12} Q^{-\left(1+r_{n}\right)}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1}\right\} . \tag{20}
\end{equation*}
$$

From (18) and (20) we get

$$
\begin{equation*}
\mu(\sigma(P))<c_{5} c_{12}^{-1} Q^{-d_{n}+1+r_{n}} \mu\left(\sigma_{1,1}(P)\right) \tag{21}
\end{equation*}
$$

Note that from 19) it follows that $\mu\left(\sigma_{1,1}(P)\right)<c_{12} Q^{-1-r_{n} / 2}$ and $\mu\left(\sigma_{1,1}(P)\right)<\mu(K)$ for $c_{7} \geq c_{12}$.

Decompose the polynomial P into Taylor series on the cylinder $\sigma_{1,1}(P)$ so that

$$
P(w)=\sum_{i=1}^{n}(i!)^{-1} P^{(i)}\left(\alpha_{1}\right)\left(w-\alpha_{1}\right)^{i}
$$

Using (19) and (20), estimate each term of the decomposition to obtain

$$
\begin{equation*}
|P(w)|_{p}<c_{12} Q^{-1-r_{n}} \quad \text { for } Q>Q_{0} \tag{22}
\end{equation*}
$$

Let $w \in \sigma_{1,1}(P)$. By Taylor's formula,

$$
\begin{equation*}
\left|P^{\prime}(w)\right|_{p} \leq \delta \quad \text { for } \quad Q>Q_{0} \tag{23}
\end{equation*}
$$

Fix the vector $\mathbf{b}_{1}=\left(a_{n}, \ldots, a_{2}\right)$ which consists of the coefficients of the polynomial $P(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$. Let the subclass of polynomials $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ with the same vector \mathbf{b}_{1} be denoted by $\mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)$. The cylinders $\sigma_{1,1}(P)$ divide into two classes using Sprindzuk's method of essential and inessential domains [15]. The cylinders $\sigma_{1,1}(P)$ are called inessential if there is a polynomial $\bar{P} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)($ with $P \neq \bar{P})$, such that

$$
\begin{equation*}
\mu\left(\sigma_{1,1}(P) \cap \sigma_{1,1}(\bar{P})\right) \geq 1 / 2 \mu\left(\sigma_{1,1}(P)\right) \tag{24}
\end{equation*}
$$

and essential otherwise. According to this classification, we have $\mathcal{L}_{n 1} \subseteq \mathcal{V}_{\text {ess }} \cup \mathcal{V}_{\text {iness }}$.
First, the essential cylinders $\sigma_{1,1}(P)$ are investigated. By definition

$$
\sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)} \mu\left(\sigma_{1,1}(P)\right) \leq \mu(K) .
$$

Using the last estimate, (21) and the fact that the number of different vectors \mathbf{b}_{1} does not exceed $\left(2 c_{6} Q^{r_{n}}+1\right)^{n-1}$, it follows that

$$
\begin{equation*}
\mu\left(\mathcal{V}_{e s s}\right)=\sum_{\substack { \mathbf{b}_{1} \\
\begin{subarray}{c}{P \in \mathcal{P}_{n}\left(c_{6} Q^{\left.r_{n}, \mathbf{b}_{1}\right)} \\
\sigma_{1,1}(P)\right. \text { essential }{ \mathbf { b } _ { 1 } \\
\begin{subarray} { c } { P \in \mathcal { P } _ { n } (c _ { 6 } Q ^ { r _ { n } , \mathbf { b } _ { 1 }) } \\
\sigma _ { 1 , 1 } (P) \text { essential } } }\end{subarray}} \mu(\sigma(P))<2^{n} c_{6}^{n-1} c_{5} c_{12}^{-1} Q^{-d_{n}+1+n r_{n}} \mu(K) \leq t \mu(K) \tag{25}
\end{equation*}
$$

for $c_{12} \geq 2^{n} c_{6}^{n-1} c_{5} t^{-1}$ and $Q>Q_{0}$.
Second, we consider the inessential cylinders $\sigma_{1,1}(P)$. Let $\sigma_{1,1}(P, \bar{P})=\sigma_{1,1}(P) \cap$ $\sigma_{1,1}(\bar{P})$, where $P, \bar{P} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)$ and $P \neq \bar{P}$. Then on the set $\sigma_{1,1}(P, \bar{P})$ with the measure at least $1 / 2 \mu\left(\sigma_{1,1}(P)\right)$ for the polynomials P and \bar{P} the inequality 22 holds. Now consider the new polynomial $R(w)=P(w)-\bar{P}(w)$ which is a linear polynomial since the polynomials P and \bar{P} have the same coefficients $a_{n}, a_{n-1}, \ldots, a_{2}$. Thus, by Lemma 5, (22) and (23) for $w \in \sigma_{1,1}(P)$ we have

$$
\begin{equation*}
|R(w)|_{p}=|a w-b|_{p}<2^{4} p^{2} c_{12} Q^{-1-r_{n}}, \max (|a|,|b|)<2 c_{6} Q^{r_{n}},|a|_{p} \leq \delta . \tag{26}
\end{equation*}
$$

Denote by $L_{1}\left(2 c_{6} Q^{r_{n}}, K\right)$ the set of $w \in K$ for which the system (26) has a solution in polynomials $P \in \mathcal{P}_{1}\left(2 c_{6} Q^{r_{n}}\right)$. By Lemma 6 (ii, iii), we have $\mu\left(L_{1}\left(2 c_{6} Q^{r_{n}}, K\right)\right)<2 t \mu(K)$ for $c_{7} \geq 2^{7} p^{2} c_{6} c_{12} t^{-1}$ and $\delta \leq 2^{-9} p^{-2} c_{6}^{-2} c_{12}^{-1} t$. Obviously $\mathcal{V}_{\text {iness }} \subseteq L_{1}\left(2 c_{6} Q^{r_{n}}, K\right)$.

Choose $c_{12}=2^{n} c_{5} t^{-1} c_{6}^{n-1}$. Therefore, for the measure of the set $\mathcal{L}_{n 1}\left(c_{6} Q^{r_{n}}\right)$ the bounds, obtained for both essential and inessential cylinders, can be rewritten as

$$
\begin{equation*}
\mu\left(\mathcal{L}_{n 1}\right)<3 t \mu(K) \tag{27}
\end{equation*}
$$

for $\delta \leq 2^{-n-9} p^{-2} c_{5} t^{-1} c_{6}^{-n-1} t^{2}$ and $c_{7} \geq \max \left\{2^{n+7} p^{2} c_{5} c_{6}^{n} t^{-2}, 2^{n} c_{5} t^{-1} c_{6}^{n-1}\right\}$. This completes the proof of Proposition 1.

For some $c_{13}>0$ define the subset $\mathcal{L}_{n 2}$ of the set $\tilde{\mathcal{L}}_{n}$, containing the $w \in K$, for which there exists at least one polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (17) and the inequality

$$
c_{13} Q^{-r_{n}}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq Q^{-r_{n} / 2}
$$

where α_{1} is the closest root to w of P.
Proposition 2. For $c_{13}=2^{n / 2+1} p c_{5}^{1 / 2} c_{6}^{(n-1) / 2} t^{-1 / 2}$ and sufficiently large constant c_{7} and sufficiently large Q we have $\mu\left(\mathcal{L}_{n 2}\right)<3 t \mu(K)$.

Proof. The proof of the Proposition 2 is closely related to the proof of Proposition 1. As before, for $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ and some positive constant c_{14} (which will be specified later) we consider the cylinder $\sigma(P)$ and define the cylinder

$$
\begin{equation*}
\sigma_{1,2}(P):=\left\{w \in S_{P}\left(\alpha_{1}\right) \cap K:\left|w-\alpha_{1}\right|_{p}<c_{14} Q^{-1-r_{n}}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1}\right\} . \tag{28}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\mu(\sigma(P))<c_{14}^{-1} Q^{-d_{n}+1+r_{n}} \mu\left(\sigma_{1,2}(P)\right) \tag{29}
\end{equation*}
$$

The definition of $\mathcal{L}_{n 2}$ gives us that $\mu\left(\sigma_{1,2}(P)\right)<\mu(K)$ for $c_{7} \geq c_{13}^{-1} c_{14}$. Develop P and P^{\prime} as a Taylor series on $\sigma_{1,2}(P)$ to obtain

$$
\begin{equation*}
|P(w)|_{p}<c_{14} Q^{-1-r_{n}}, \quad\left|P^{\prime}(w)\right|_{p}=\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \tag{30}
\end{equation*}
$$

for $c_{14}<p^{-2} c_{13}^{2}$. Further consider the essential and inessential cylinders $\sigma_{1,2}(P)$. In the case of the essential cylinders we have

$$
\begin{gather*}
\sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{\left.r_{n}, \mathbf{b}_{1}\right)}\right.} \mu\left(\sigma_{1,2}(P)\right) \leq \mu(K), \\
\sum_{\mathbf{b}_{1}} \sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)} \mu(\sigma(P))<2^{n} c_{6}^{n-1} c_{5} c_{14}^{-1} Q^{-d_{n}+1+n r_{n}} \mu(K) \leq t \mu(K) \tag{31}
\end{gather*}
$$

for $c_{14} \geq 2^{n} c_{6}^{n-1} c_{5} t^{-1}$ and $Q>Q_{0}$.
It follows from (30) that in the case of the inessential cylinders for the polynomial $T(w)=P(w)-\bar{P}(w)=k w-d$, where $P, \bar{P} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$, and $P \neq \bar{P}$. By 30 and Lemma 5, for $w \in \sigma_{1,2}(P)$ we have

$$
\begin{equation*}
|k w-d|_{p}<2^{4} p^{2} c_{14} Q^{-1-r_{n}}, \quad \max (|k|,|d|)<2 c_{6} Q^{r_{n}}, \quad|k|_{p} \leq Q^{-r_{n} / 2} \tag{32}
\end{equation*}
$$

Denote by $L_{2}\left(2 c_{6} Q^{r_{n}}, K\right)$ the set of $w \in K$ for which the system (32) has a solution in polynomials $P \in \mathcal{P}_{1}\left(2 c_{6} Q^{r_{n}}\right)$. By Lemma $6($ iii $)$, we obtain that $\mu\left(L_{2}\left(2 c_{6} Q^{r_{n}}, K\right)\right)<$ $2 t \mu(K)$ for $c_{7} \geq 2^{7} p^{2} c_{6} c_{14} t^{-1}$.

Choose $c_{14}=2^{n} c_{6}^{n-1} c_{5} t^{-1}$ and $c_{13}=2^{n / 2+1} p c_{6}^{(n-1) / 2} c_{5}^{1 / 2} t^{-1 / 2}$. The upshot is that

$$
\begin{equation*}
\mu\left(\mathcal{L}_{n 2}\right)<3 t \mu(K) \tag{33}
\end{equation*}
$$

for $c_{7} \geq \max \left(2^{n / 2-1} p^{-1} c_{6}^{(n-1) / 2} c_{5}^{1 / 2} t^{-1 / 2}, 2^{n+7} p^{2} c_{6}^{n} c_{5} t^{-2}\right)$. This completes the proof of Proposition 2 .

In the case if $c_{6}^{(n+1) / 2} c_{5}^{1 / 2}>2^{-(n+10) / 2} p^{-1} t^{1 / 2}$ we need to consider the following set. Denote by $\mathcal{L}_{n 3} \subset \mathcal{L}_{n}$ the set of $w \in K$, for which there exists at least one polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (17) and the inequality

$$
2^{-4} c_{6}^{-1} Q^{-r_{n}}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq 2^{n / 2+1} p c_{6}^{(n-1) / 2} c_{5}^{1 / 2} t^{-1 / 2} Q^{-r_{n}}
$$

where α_{1} is the closest root to w of P.
Proposition 3. For sufficiently large constant c_{7} and sufficiently large Q we have $\mu\left(\mathcal{L}_{n 3}\right)<3 t \mu(K)$.

Proof. For $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)$ and some $c_{15}>0$ define the cylinder

$$
\sigma_{1,3}(P):=\left\{w \in S_{P}\left(\alpha_{1}\right) \cap K:\left|w-\alpha_{1}\right|_{p}<c_{15} Q^{-\left(1+r_{n}\right)}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1}\right\} .
$$

The definition of $\mathcal{L}_{n 3}$ gives us that $\mu\left(\sigma_{1,3}(P)\right)<\mu(K)$ for $c_{7} \geq 2^{4} c_{6} c_{15}$. Develop P and P^{\prime} as a Taylor series on $\sigma_{1,3}(P)$ to obtain

$$
|P(w)|_{p} \leq c_{16} Q^{-1-r_{n}}, \quad\left|P^{\prime}(w)\right|_{p} \leq c_{17} Q^{-r_{n}}
$$

for $c_{16}=\max \left(c_{15}, 2^{8} p^{2} c_{6}^{2} c_{15}^{2}\right)$ and $c_{17}=\max \left(2^{n / 2+1} p c_{6}^{(n-1) / 2} c_{5}^{1 / 2} t^{-1 / 2}, 2^{4} p c_{6} c_{15}\right)$.
Then consider the essential and inessential cylinders $\sigma_{1,3}(P)$ for $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{1}\right)$. In the case of the essential cylinders we obtain that the measure does not exceed $t \mu(K)$
for $c_{15} \geq 2^{n} c_{5} c_{6}^{n-1} t^{-1}$. In the case of the inessential cylinders we need to find the measure of $w \in K$ for which there exists at least one polynomial $P \in \mathcal{P}_{1}\left(2 c_{6} Q^{r_{n}}\right)$ satisfying

$$
\begin{equation*}
|a w-b|_{p}<2^{4} p^{2} c_{16} Q^{-1-r_{n}}, \quad|a|_{p}<c_{17} Q^{-r_{n}} \tag{34}
\end{equation*}
$$

for any $w \in \sigma_{1,3}(P)$. By Lemma $\sqrt{6}$ (iii), the measure in the case of inessential domains is at most $2 t \mu(K)$ for $c_{7} \geq 2^{7} p^{2} c_{6} c_{16} t^{-1}$. Choose $c_{15}=2^{n} c_{6}^{n-1} c_{5} t^{-1}$. Then we get $c_{7} \geq$ $\max \left(2^{n+4} c_{6}^{n} c_{5} t^{-1}, 2^{7} p^{2} c_{6} c_{16} t^{-1}\right)$.

For some constant $c_{18}>0$ we denote by $\mathcal{L}_{n 4} \subset \tilde{\mathcal{L}}_{n}$ the set of $w \in K$, for which there exists at least one polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (17) and the inequality

$$
c_{18} Q^{-\left(2+r_{n}\right) / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq 2^{-4} c_{6}^{-1} Q^{-r_{n}}
$$

where α_{1} is the closest root to w of P.
Proposition 4. For $c_{18}=2^{(n+1) / 2} p c_{5}^{1 / 2} c_{6}^{(n-2) / 2} t^{-1 / 2}$ and sufficiently large constant c_{7} and sufficiently large Q we have $\mu\left(\mathcal{L}_{n 4}\right)<3 t \mu(K)$.

Proof. For $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ and some $c_{19}>1$ define the cylinder

$$
\sigma_{2}(P):=\left\{w \in S_{P}\left(\alpha_{1}\right) \cap K:\left|w-\alpha_{1}\right|_{p}<c_{19} Q^{-\left(2+r_{n}\right)}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1}\right\} .
$$

Clearly, that

$$
\begin{equation*}
\mu(\sigma(P))<c_{5} c_{19}^{-1} Q^{-d_{n}+2+r_{n}} \mu\left(\sigma_{2}(P)\right) \tag{35}
\end{equation*}
$$

The definition of $\mathcal{L}_{n 4}$ gives us that $\mu\left(\sigma_{2}(P)\right)<\mu(K)$ for $c_{7} \geq c_{18}^{-1} c_{19}$.
Fix $\mathbf{b}_{2}=\left(a_{n}, \ldots, a_{3}\right)$. Let the subclass of polynomials $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ with the same vector \mathbf{b}_{2} be denoted by $\mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{2}\right)$. Consider again essential and inessential domains $\sigma_{2}(P)$ for $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{2}\right)$.

By the definition of the essential domains, it follows that

$$
\sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{\left.r_{n}, \mathbf{b}_{2}\right)}\right.} \mu\left(\sigma_{2}(P)\right) \leq \mu(K) .
$$

Since the number of \mathbf{b}_{2} does not exceed $\left(2 c_{6} Q^{r_{n}}+1\right)^{n-2}$ then, summing over all \mathbf{b}_{2} and using (35) and $d_{n} \geq n+r_{n}$, we have

$$
\begin{gathered}
\sum_{\mathbf{b}_{2}} \sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{\left.r_{n}, \mathbf{b}_{2}\right)}\right.} \mu(\sigma(P))<2^{n-1} c_{6}^{n-2} c_{5} c_{19}^{-1} Q^{r_{n}(n-1)-d_{n}+2} \mu(K) \leq \\
\leq 2^{n-1} c_{6}^{n-2} c_{5} c_{19}^{-1} Q^{\left(r_{n}-1\right)(n-2)} \mu(K) \leq t \mu(K)
\end{gathered}
$$

for $c_{19} \geq 2^{n-1} c_{6}^{n-2} c_{5} t^{-1}, n \geq 2$ and $Q>Q_{0}$.
Now consider the inessential domains. By the Taylor expansion of $P_{i}(w)$ and $P_{i}^{\prime}(w)$ on $\sigma_{2}\left(P_{i_{1}}, P_{i_{2}}\right)=\sigma_{2}\left(P_{i_{1}}\right) \cap \sigma_{2}\left(P_{i_{2}}\right), P_{i_{1}}, P_{i_{2}} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{2}\right) P_{i_{1}} \neq P_{i_{2}}$, find the upper bound of $\left|P_{i}(w)\right|_{p}$ and $\left|P_{i}^{\prime}(w)\right|_{p}$, so that

$$
\begin{equation*}
\left|P_{i}(w)\right|_{p}<c_{19} Q^{-2-r_{n}}, \quad\left|P_{i}^{\prime}(w)\right|_{p}=\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \text { for } c_{18}>p c_{19}^{1 / 2} . \tag{36}
\end{equation*}
$$

Since the leading coefficients of $P_{i_{1}}$ and $P_{i_{2}}$ are equal then $W(w)=P_{i_{1}}(w)-P_{i_{2}}(w)=$ $f_{2} w^{2}+f_{1} w+f_{0}$ and, by (36),

$$
\begin{equation*}
|W(w)|_{p}<c_{19} Q^{-2-r_{n}}, \quad\left|W^{\prime}(w)\right|_{p}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}, \quad\left|f_{i}\right| \leq 2 c_{6} Q^{r_{n}}, \quad 0 \leq i \leq 2 \tag{37}
\end{equation*}
$$

Then we need to consider the discriminant $D(W)$ of W and distinguish two cases: $D(W) \neq 0$ and $D(W)=0$. It is easy to verify that the representation of $D(P)$ for $P \in \mathcal{P}_{n}\left(2 c_{6} Q^{r_{n}}\right)$ as a determinant leads to the upper bound

$$
|D(P)| \leq 2 n^{2 n-1}(2 n-2)!\left(2 c_{6} Q^{r_{n}}\right)^{2 n-2}
$$

Case 1: $D(W) \neq 0$. Let $\beta_{1}, \beta_{2} \in \mathbb{Q}_{p}^{*}$ denote the roots of $W(w)$. Since the discriminant $D(W)$ of W satisfies

$$
\begin{aligned}
& |D(W)|_{p}=\left|W^{\prime}\left(\beta_{1}\right)\right|_{p}^{2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{2} \leq 2^{-8} c_{6}^{-2} Q^{-2 r_{n}} \\
& |D(W)|_{p} \geq|D(W)|^{-1} \geq 2^{-7} c_{6}^{-2} Q^{-2 r_{n}}
\end{aligned}
$$

then we have a contradiction.
Case 2: $D(W)=0$. This implies that the polynomial W has a multiple root and has a form

$$
W(w)=W_{1}^{2}(w)=\left(l_{1} w-l_{0}\right)^{2}
$$

where by Gelfond's Lemma [11] we have $\max \left(\left|l_{1}\right|,\left|l_{0}\right|\right) \leq 2^{(n+1) / 2} c_{6}^{1 / 2} Q^{r_{n} / 2}$. By 37) and Lemma 5, we have

$$
\begin{equation*}
\left|l_{1} w-l_{0}\right|_{p}<2^{4} p^{2} c_{19}^{1 / 2} Q^{-\left(2+r_{n}\right) / 2} \tag{38}
\end{equation*}
$$

for any $w \in \sigma_{2}\left(P_{i_{1}}\right)$. Denote by $L_{3}\left(2^{(n+1) / 2} c_{6}^{1 / 2} Q^{r_{n} / 2}, K\right)$ the set of $w \in K$ for which the inequality 38) has a solution in polynomials $P \in \mathcal{P}_{1}\left(2^{(n+1) / 2} c_{6}^{1 / 2} Q^{r_{n} / 2}\right)$. By Lemma 6 6(iii), we have $\left.\mu\left(L_{3}\left(2^{(n+1) / 2} c_{6}^{1 / 2} Q^{r_{n} / 2}, K\right)\right)\right)<2 t \mu(K)$ for $c_{7} \geq 2^{(n+13) / 2} p^{2} c_{6}^{1 / 2} c_{19}^{1 / 2} t^{-1}$.

Choose $c_{19}=2^{n-1} c_{6}^{n-2} c_{5} t^{-1}$ and $c_{18}=2^{(n+1) / 2} p c_{6}^{(n-2) / 2} c_{5}^{1 / 2} t^{-1 / 2}$. Then sum the estimates for the measure of the essential and inessential cases. For

$$
c_{7} \geq \max \left(2^{(n-3) / 2} p^{-1} c_{6}^{(n-2) / 2} c_{5}^{1 / 2} t^{-1 / 2}, 2^{n+6} p^{2} c_{6}^{(n-1) / 2} c_{5}^{1 / 2} t^{-3 / 2}\right)
$$

this concludes the proof of Proposition 4.
Remark 2. For $n=2$ after Proposition 4 we need to use the following argument to finish the proof of theorem. It is easy to show that we left with the case when $\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq$ $c_{18} Q^{-\left(2+r_{2}\right) / 2}$. Similar as in Proposition 4 we obtain that $D(P)=0$. Therefore, we have $P(w)=(a w+b)^{2}$ which implies that $|a w+b|_{p}<c_{5}^{1 / 2} Q^{-d_{2} / 2}$ and $\max (|a|,|b|)<$ $2 c_{6}^{1 / 2} Q^{r_{2} / 2}$. By Lemma $\sigma(i, i i i)$ we have that the measure of $w \in K$, for which there exists at least one linear polynomial $P \in \mathcal{P}_{1}\left(2 c_{6}^{1 / 2} Q^{r_{2} / 2}\right)$ satisfying the last inequalities, does not exceed $2 t \mu(K)$ for $d_{2}>r_{2}+2$ or $d_{2}=r_{2}+2$ and $c_{7} \geq 2^{3} c_{6}^{1 / 2} c_{5}^{1 / 2} t^{-1}$.

Further, we assume that $n \geq 3$.
3.1.2 Case B: $c_{20} Q^{-\left(n-1+r_{n}\right) / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq c_{18} Q^{-\left(2+r_{n}\right) / 2}$

Here c_{20} is a sufficiently small constant which will be specified in Subsection 3.3.
Let $3 \leq k \leq n-1$. Consider the following ranges for the value of first derivative:

$$
\begin{equation*}
v_{k} Q^{-\left(k+r_{n}\right) / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq v_{k}^{\prime} Q^{-\left(k-1+r_{n}\right) / 2} \tag{39}
\end{equation*}
$$

where $v_{3}=v_{n-1}^{\prime}=1, v_{3}^{\prime}=c_{18}, v_{n-1}=c_{20}$ and $v_{k}=v_{k}^{\prime}=1$ for $4 \leq k \leq n-2$.
For $3 \leq k \leq n-1$ denote by $\mathcal{L}_{n, k} \subset \tilde{\mathcal{L}}_{n}$ the set of $w \in K$, for which there exists at least one polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (17) and (39).
Proposition 5. For sufficiently large constant c_{7} and sufficiently large Q we have $\mu\left(\mathcal{L}_{n, k}\right)<(s(k)+1) t \mu(K)$.

Proof. For a polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ define the cylinder

$$
\sigma_{k}(P):=\left\{w \in S_{P}\left(\alpha_{1}\right) \cap K:\left|w-\alpha_{1}\right|_{p}<c_{21} Q^{-\left(k+r_{n}\right)}\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}^{-1}\right\}, 3 \leq k \leq n .
$$

For $3 \leq k \leq n-1$ fix the vector $\mathbf{b}_{k}=\left(a_{n}, \ldots, a_{k+1}\right)$. Let the subclass of polynomials $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ with the same vector \mathbf{b}_{k} be denoted by $\mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{k}\right)$. The cylinders $\sigma_{k}(P)$ divide into two classes of essential and inessential domains. For $Q>Q_{0}$ we will use the estimate $\#\left\{\mathbf{b}_{k}\right\}<2^{n-k+1} c_{6}^{n-k} Q^{r_{n}(n-k)}$.

First, the essential cylinders $\sigma_{k}(P)$ are investigated. By definition

$$
\sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{k}\right)} \mu\left(\sigma_{k}(P)\right) \leq \mu(K)
$$

Using the last estimate, (18) and the fact that the number of different vectors \mathbf{b}_{k} does not exceed $2^{n-k+1} c_{6}^{n-k} Q^{r_{n}(n-k)}$, it follows that

$$
\begin{gather*}
\sum_{\mathbf{b}_{k}} \sum_{P \in \mathcal{P}_{n}\left(c_{6} Q^{\left.r_{n}, \mathbf{b}_{k}\right)}\right.} \mu(\sigma(P))<2^{n+1-k} c_{6}^{n-k} c_{5} c_{21}^{-1} Q^{r_{n}(n-k+1)-d_{n}+k} \mu(K) \leq \tag{40}\\
\leq 2^{n+1-k} c_{6}^{n-k} c_{5} c_{21}^{-1} Q^{(n-k)\left(r_{n}-1\right)} \mu(K) \leq t \mu(K)
\end{gather*}
$$

for $c_{21} \geq 2^{n+1-k} c_{6}^{n-k} c_{5} t^{-1}$.
Second, we consider the inessential cylinders $\sigma_{k}(P)$. Let $\sigma_{k}(P, \bar{P})=\sigma_{k}(P) \cap \sigma_{k}(\bar{P})$, where $P, \bar{P} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}, \mathbf{b}_{k}\right)$ and $P \neq \bar{P}$. Then on the set $\sigma_{k}(P, \bar{P})$ with the measure at least $1 / 2 \mu\left(\sigma_{k}(P)\right)$ for the polynomials P and \bar{P} the following system holds:

$$
\begin{equation*}
|P(w)|_{p}<c_{22} Q^{-k-r_{n}}, \quad\left|P^{\prime}(w)\right|_{p} \leq v_{k}^{\prime} Q^{-\left(k-1+r_{n}\right) / 2} \tag{41}
\end{equation*}
$$

where $c_{22}=\max \left\{c_{21}, p^{2} c_{21}^{2} v_{k}^{-2}\right\}$. According to Lemma 5 and (41), for the new polynomials $R(w)=P(w)-\bar{P}(w)$ of $\operatorname{deg} R \leq k$ with $H(R) \leq 2 c_{6} Q^{r_{n}}$ on $\sigma_{k}(P)$ we have

$$
\begin{equation*}
|R(w)|_{p}<(2 p(k+1))^{k+1} c_{22} Q^{-k-r_{n}}, \quad\left|R^{\prime}(w)\right|_{p} \leq(2 p k)^{k} v_{k}^{\prime} Q^{-\left(k-1+r_{n}\right) / 2} \tag{42}
\end{equation*}
$$

By applying inductive hypothesis to polynomials R and using 40), we obtain $\mu\left(\mathcal{L}_{n, k}\right)<$ $(s(k)+1) t \mu(K)$ for $3 \leq k \leq n-1$, sufficiently large c_{7} and sufficiently large Q.

It now follows via Proposition 5. that $\mu\left(\bigcup_{k=3}^{n-1} \mu\left(\mathcal{L}_{n, k}\right)\right)<\left(\sum_{k=3}^{n-1} s(k)+n-3\right) t \mu(K)$ for $Q>Q_{0}$ and sufficiently large c_{7}.
3.1.3 Case C: $p c_{5}^{1 / 2} Q^{-d_{n} / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq c_{20} Q^{-\left(n-1+r_{n}\right) / 2}$ and irreducible polynomials

Consider the set $\mathcal{L}_{n, n}$ which is the set of $w \in K$, for which there exists at least one irreducible polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying

$$
\begin{equation*}
|P(w)|_{p}<c_{5} Q^{-d_{n}}, \quad p c_{5}^{1 / 2} Q^{-d_{n} / 2}<\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq c_{20} Q^{-\left(n-1+r_{n}\right) / 2} . \tag{43}
\end{equation*}
$$

Proposition 6. For sufficiently large Q we have $\mu\left(\mathcal{L}_{n, n}\right)<2 t \mu(K)$.
Proof. Divide the cylinder K into smaller cylinders J_{i} with $\mu\left(J_{i}\right)=Q^{-u}$ where $u>1$. We say the polynomial P belongs to the cylinder J_{i} if there exists $w \in J_{i}$ such that (3) and (43) hold. If there is at most one irreducible polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ that belongs to every J_{i} then by Lemma 1 the measure of those w, that satisfy (43), does not exceed

$$
\begin{equation*}
n p^{-1} c_{5}^{1 / 2} Q^{-d_{n} / 2+u} \mu(K)<t \mu(K) \tag{44}
\end{equation*}
$$

for $u<d_{n} / 2$ and sufficiently large Q.
If at least two irreducible polynomials $P_{i} \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ of the form $P_{i}(w)=k_{i} P(w)$ for the same irreducible polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right), k_{i} \in \mathbb{Z}$, belong to the cylinder J_{i} then the measure in this case coincides with the measure in (44).

The assumption that at least two irreducible polynomials without common roots belong to the cylinder J_{i} will lead to a contradiction. To show this, suppose that P_{1} and P_{2} belong to J_{i}. Develop P_{1} as a Taylor series in the neighbourhood J_{i} of α_{1} to obtain

$$
|P(w)|_{p} \leq \max \left\{c_{20} Q^{-\left(n-1+r_{n}\right) / 2-u}, p^{2} Q^{-2 u}\right\}=c_{20} Q^{-\left(n-1+r_{n}\right) / 2-u}, \quad w \in J_{i}
$$

for $u>\left(n-1+r_{n}\right) / 2$. Obviously, the same estimate holds for P_{2} on J_{i}.
Applying Lemma 4 to polynomials P_{1} and P_{2} with $\tau=\left(\left(n-1+r_{n}\right) / 2+u-\epsilon_{1}^{\prime}\right) / r_{n}$ and $\eta=\left(u+\epsilon_{2}^{\prime}\right) / r_{n}$, where $\epsilon_{i}^{\prime}>0$ is sufficiently small, leads to a contradiction in (8) for $u>\left(n-1+r_{n}\right) / 2+2 \theta$ and $\epsilon_{1}^{\prime}+\epsilon_{2}^{\prime} \leq \theta$. Choose u, satisfying $\left(n-1+r_{n}\right) / 2+2 \theta<u<d_{n} / 2$.

3.2 Case of small derivative and irreducible polynomials

Define the subset $\check{\mathcal{L}}_{n}$ of the set $\overline{\mathcal{L}}_{n}$ containing $w \in K$ for which there exists irreducible polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ such that

$$
\begin{equation*}
|P(w)|_{p}<c_{5} Q^{-d_{n}}, \quad\left|P^{\prime}(w)\right|_{p} \leq p c_{5}^{1 / 2} Q^{-d_{n} / 2} . \tag{45}
\end{equation*}
$$

Proposition 7. For sufficiently large constant c_{7} and sufficiently large Q we have $\mu\left(\check{\mathcal{L}}_{n}\right)<3 t \mu(K)$.

Proof. Define by $\sigma_{*}(P)$ the set of solutions of the system (45) for a fixed polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$. Let $w \in \sigma_{*}(P) \cap S_{P}\left(\alpha_{1}\right)$. First, it is shown that the value of the derivative of P at $\alpha_{1}, P\left(\alpha_{1}\right)=0$, satisfies

$$
\begin{equation*}
\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq p c_{5}^{1 / 2} Q^{-d_{n} / 2} \tag{46}
\end{equation*}
$$

To show this, assume the opposite of (46). Then develop P^{\prime} as a Taylor series in the neighborhood of α_{1} and use the estimate $\left|w-\alpha_{1}\right|_{p}<c_{5}^{1 / 2} p^{-1} Q^{-d_{n} / 2}$ from Lemma 1 . Since

$$
\max \left\{\max _{2 \leq j \leq n}\left\{\left|((j-1)!)^{-1} P^{(j)}\left(\alpha_{1}\right)\right|_{p}\left|w-\alpha_{1}\right|_{p}^{j-1}\right\},\left|P^{\prime}(w)\right|_{p}\right\} \leq c_{5}^{1 / 2} p^{-1} Q^{-d_{n} / 2}
$$

for $Q>Q_{0}$, it follows that $\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq c_{5}^{1 / 2} p^{-1} Q^{-d_{n} / 2}$ which contradicts to the condition that $\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}>p c_{5}^{1 / 2} Q^{-d_{n} / 2}$.

Note that the set $\breve{\mathcal{L}}_{n}$ can be written as

$$
\check{\mathcal{L}}_{n}=\left\{\begin{array}{lll}
L_{\leq} & \text {if } & d_{n}>n+n(n+1) r_{n} \\
L_{\leq} \cup L_{>} & \text {if } & d_{n} \leq n+n(n+1) r_{n}
\end{array}\right.
$$

where $L_{\leq}=\bigcup \quad \sigma_{*}(P)$ and $L_{>}=\quad \sigma_{*}(P)$.

$$
P \in \mathcal{P}_{n}\left(Q^{\frac{d_{n}-n}{n(n+1)}}\right) \quad P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right) \backslash \mathcal{P}_{n}\left(Q^{\frac{d_{n}-n}{n(n+1)}}\right)
$$

Next, we are going to establish the following two separate cases.
Case 1: $\mu\left(L_{\leq}\right)<t \mu(K)$ for sufficiently large constant c_{7} and sufficiently large Q.
Let $w \in \sigma_{*}(P) \cap S_{P}\left(\alpha_{1}\right)$ for some $P \in \mathcal{P}_{n}\left(Q^{\frac{d_{n}-n}{n(n+1)}}\right)$. Then by 45 and Lemma 1 (for $j=n$), we have

$$
\begin{equation*}
\left|w-\alpha_{1}\right|_{p} \leq\left(c_{5} c_{8}^{-1} Q^{-d_{n}}\right)^{1 / n} \tag{47}
\end{equation*}
$$

Summing the estimate 47 over all polynomials $P \in \mathcal{P}_{n}\left(Q^{\frac{d_{n}-n}{n(n+1)}}\right)$, we obtain

$$
\mu\left(L_{\leq}\right) \leq\left(2 Q^{\frac{d_{n}-n}{n(n+1)}}+1\right)^{n+1} c_{5}^{1 / n} c_{8}^{-1 / n} Q^{-d_{n} / n} n \leq t \mu(K)
$$

for $c_{7} \geq 2^{n+2} n c_{5}^{1 / n} c_{8}^{-1 / n} t^{-1}$ and $Q>Q_{0}$.
Case 2: $\mu\left(L_{>}\right)<2 t \mu(K)$ for sufficiently large Q.
For every irreducible polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right) \backslash \mathcal{P}_{n}\left(Q^{\frac{d_{n}-n}{n(n+1)}}\right)$ we define the set

$$
A(P)=\left\{\alpha_{1}: P\left(\alpha_{1}\right)=0 \text { and }\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq p c_{5}^{1 / 2} Q^{-d_{n} / 2}\right\}
$$

For $k \in \mathbb{N}$, let $\mathcal{P}_{\mathbf{1}}^{k}$ denote the subclass of $\mathcal{P}_{n}(\mathbf{l})$ given by

$$
\mathcal{P}_{\mathbf{l}}^{k}=\left\{P \in \mathcal{P}_{n}(\mathbf{l}): 2^{k-1}<H(P) \leq 2^{k}\right\} .
$$

Then we have

$$
\mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right) \backslash \mathcal{P}_{n}\left(Q^{\frac{d_{n}-n}{n(n+1)}}\right)=\bigcup_{1} \bigcup_{k=\left[\frac{d n-n}{n(n+1)} \log _{2} Q\right]+1}^{\left[\left(r_{n}+\epsilon\right) \log _{2} Q\right]} \mathcal{P}_{1}^{k}
$$

for $\epsilon>0$ and $Q>Q_{0}$.
Now divide the cylinder K into smaller cylinders J_{i}^{\prime} with $\mu\left(J_{i}^{\prime}\right)=c_{23} 2^{k\left(u^{\prime}+\gamma\right)}$ where $c_{23}>c_{24}, c_{24}=\max _{1 \leq j \leq n}\left(c_{8}^{-1} c_{6}^{d_{n} / r_{n}} c_{5}\right)^{1 / j}, \gamma \geq n \epsilon_{1}, r_{n}\left(u^{\prime}+\gamma\right) \leq-1$ and

$$
u^{\prime}=\min _{1 \leq j \leq n}\left\{\left(-d_{n} / r_{n}+q_{j}\right) / j\right\}, q_{n}=0 .
$$

Note for $j=n$ from the last estimate we have $u^{\prime}=-d_{n} /\left(n r_{n}\right)$. Then from inequality $r_{n}\left(u^{\prime}+\gamma\right) \leq-1$ we obtain that $\gamma \leq\left(d_{n}-n\right) /\left(n r_{n}\right)$. Choose $\gamma=1 /(2 n)$.

First show that the assumption that at least two irreducible polynomials from \mathcal{P}_{1}^{k} without common roots belong to the cylinder J_{i}^{\prime} will lead to a contradiction. To show this, suppose that P_{1} and P_{2} belong to J_{i}^{\prime}. By Lemma 3 and (46) we have $c(n) H(P)^{-q_{1}}<$ $\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq p c_{5}^{1 / 2} Q^{-d_{n} / 2}$, which implies that $q_{1}>d_{n} /\left(2 r_{n}\right)$ for $H(P) \leq c_{6} Q^{r_{n}}$ and sufficiently large Q. Develop P_{1} as a Taylor series in the neighbourhood J_{i}^{\prime} of α_{1} to obtain

$$
|P(w)|_{p}<2^{k\left(-d_{n} / r_{n}+(n+1) \gamma\right)}, \quad w \in J_{i}^{\prime}
$$

for sufficiently large k, where

$$
\begin{gathered}
\left|(j!)^{-1} P^{(j)}\left(\alpha_{1}\right)\right|_{p}\left|w-\alpha_{1}\right|_{p}^{j}<p^{j} 2^{(k-1)\left(-q_{j}+(n-j) \epsilon_{1}\right)} c_{23}^{j} 2^{k\left(j \gamma+j\left(\frac{-d_{n} / r_{n}+q_{j}}{j}\right)\right)}= \\
=p^{j} c_{23}^{j} 2^{q_{j}-(n-j) \epsilon_{1}} 2^{k\left(j \gamma-d_{n} / r_{n}+(n-j) \epsilon_{1}\right)}, \quad 1 \leq j \leq n .
\end{gathered}
$$

Obviously, the same estimate holds for P_{2} on J_{i}^{\prime}. Apply Lemma 4 to polynomials P_{1} and P_{2} with $\tau=d_{n} / r_{n}-(n+1) \gamma$ and $\eta=-u^{\prime}-\gamma-\epsilon_{1}$. Therefore

$$
\begin{aligned}
& \tau+2 \max (\tau-\eta, 0)=3 d_{n} / r_{n}+2\left(-d_{n} / r_{n}+q_{j}\right) / j-\gamma(3 n+1)+2 \epsilon_{1} \geq \\
& \quad \geq \begin{cases}2 d_{n} / r_{n}-\gamma(3 n+1)+2 \epsilon_{1}, & 2 \leq j \leq n, \\
d_{n} / r_{n}+2 q_{1}-\gamma(3 n+1)+2 \epsilon_{1}, & j=1\end{cases}
\end{aligned}
$$

Since $q_{1}>d_{n} /\left(2 r_{n}\right), d_{n} \geq n+r_{n}$ and $r_{n} \leq 1$, it is readily seen that $\tau+2 \max (\tau-\eta, 0)>$ $2 n+2-\gamma(3 n+1)+2 \epsilon_{1}$ in both cases. Since $\gamma=1 /(2 n)$ the last inequality gives a contradiction in (8) for $\theta \leq(n-1) /(2 n)$.

Therefore, there is at most one irreducible polynomial $P \in \mathcal{P}_{1}^{k}$ that belongs to J_{i}^{\prime} or there are two irreducible polynomials $P_{i} \in \mathcal{P}_{1}^{k}$, of the form $P_{i}(w)= \pm P(w)$ for some irreducible polynomial $P \in \mathcal{P}_{1}^{k}$, belong to the cylinder J_{i}^{\prime}. This will divide the polynomials P into two classes with respect to the cylinder J^{\prime} : class I and class II respectively. According to this classification, it follows that

$$
L_{>} \subseteq L_{I} \cup L_{I I}
$$

where $L_{j}=\bigcup_{1} \bigcup_{k=\left[\frac{d_{n}-n}{n(n+1)} \log _{2} Q\right]+1}^{\left[\left(r_{n}+\epsilon\right) \log _{2} Q\right]} \bigcup_{\substack{P \in \mathcal{P}_{l}^{k} \\ P \text { of class } j}} \sigma_{*}(P)$ for $j=I, I I$.
For $P \in \mathcal{P}_{1}^{k}$ denote by $\nu\left(P, \alpha_{1}\right)$ the set of $w \in S_{P}\left(\alpha_{1}\right)$ satisfying (45) and 46). According to Lemma 1 and Lemma 3 we have that

$$
\mu\left(\nu\left(P, \alpha_{1}\right)\right)<c_{24} 2^{k u^{\prime}} .
$$

Using the inclusion $\sigma_{*}(P) \subseteq \bigcup_{\alpha_{1} \in A(P)} \nu\left(P, \alpha_{1}\right)$ for any polynomial P and the fact that the number of polynomials $P \in \mathcal{P}_{1}^{k}$ of class I does not exceed the number of cylinders
J^{\prime}, we obtain

$$
\begin{gather*}
\mu\left(L_{I}\right) \leq \sum_{1} \sum_{k=\left[\frac{d_{n}-n}{n(n+1)} \log _{2} Q\right]+1}^{\left[\left(r_{n}+\epsilon\right) \log _{2} Q\right]} n c_{23}^{-1} c_{24} 2^{k u^{\prime}} 2^{k\left(-u^{\prime}-\gamma\right)} \mu(K)< \\
<n C\left(n, \epsilon_{1}\right) c_{23}^{-1} c_{24} \mu(K) \sum_{k=0}^{\infty} 2^{-k /(2 n)}<n C\left(n, \epsilon_{1}\right) c_{23}^{-1} c_{24} 2^{1 /(2 n)}\left(2^{1 /(2 n)}-1\right)^{-1} \mu(K)< \tag{48}\\
<4 n^{2} C\left(n, \epsilon_{1}\right) c_{23}^{-1} c_{24} \mu(K) \leq t \mu(K)
\end{gather*}
$$

for $c_{23} \geq 4 n^{2} t^{-1} c_{24} C\left(n, \epsilon_{1}\right)$ and sufficiently large Q.
It is easy to see that the measure $\mu\left(L_{I I}\right)$ coincides with the measure $\mu\left(L_{I}\right)$.

3.3 Reducible polynomials

Let $n \geq 3$. Now we need to consider the case

$$
\begin{equation*}
|P(w)|_{p}<c_{5} Q^{-d_{n}}, \quad\left|P^{\prime}(w)\right|_{p} \leq c_{20} Q^{-\left(n-1+r_{n}\right) / 2}, \quad\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p} \leq c_{20} Q^{-\left(n-1+r_{n}\right) / 2} \tag{49}
\end{equation*}
$$

Define the subset $\mathcal{L}_{\text {red }}$ of the set $\overline{\mathcal{L}}_{n}$ containing $w \in K$ for which there exists reducible polynomial $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ satisfying (49).

Proposition 8. For sufficiently large constant c_{7} and sufficiently large Q we have $\mu\left(\mathcal{L}_{r e d}\right)<\left(\sum_{k=1}^{[n / 2]}(4 s(k)+3 s(n-k))+n-1\right) t \mu(K)$.

Proof. Let $P \in \mathcal{P}_{n}\left(c_{6} Q^{r_{n}}\right)$ be a reducible polynomial which belongs to K. Let P have the form

$$
P(w)=P_{1}(w) P_{2}(w), \quad \operatorname{deg} P_{1}=n_{1}, \quad \operatorname{deg} P_{2}=n-n_{1} .
$$

Assume without loss of generality that $1 \leq n_{1} \leq n / 2$.

3.3.1 Polynomials of the form $P(w)=\left(P_{1}(w)\right)^{s}$

Let $n=n_{1} s$ and $P(w)=\left(P_{1}(w)\right)^{s}$ where $2 \leq s \leq n$. Therefore, $H\left(P_{1}\right)<2^{n_{1}} c_{6}^{1 / s} Q^{r_{n} / s}$ and

$$
\begin{equation*}
\left|P_{1}(w)\right|_{p}<c_{5}^{n_{1} / n} Q^{-d_{n} / s} . \tag{50}
\end{equation*}
$$

Let $n_{1}=1$. Therefore, $\left|P_{1}(w)\right|_{p}=|a w+b|_{p}<c_{5}^{1 / n} Q^{-d_{n} / n}$ and $H\left(P_{1}\right)<2 c_{6}^{1 / n} Q^{r_{n} / n}$. By Lemma 6(iii) we have that the measure of such $w \in K$ does not exceed $2 t \mu(K)$ for $c_{7} \geq 2^{3} c_{6}^{1 / n} c_{5}^{1 / n} t^{-1}$.

Let $2 \leq n_{1} \leq n / 2$. If $\left|P_{1}^{\prime}(w)\right|_{p}<\delta_{1}$ with $\delta_{1}=2^{-n_{1}^{2}-2 n_{1}-9} p^{-2} c_{6}^{-\left(n_{1}+1\right) n_{1} / n} c_{5}^{-n_{1} / n} t^{2}$, then by inductive hypothesis the measure of $w \in K$ satisfying (50) does not exceed $s\left(n_{1}\right) t \mu(K)$ for sufficiently large Q. If $\left|P_{1}^{\prime}(w)\right|_{p} \geq \delta_{1}$ then by Lemma 1 we have

$$
\left|w-\alpha_{1}\right|_{p}<c_{5}^{n_{1} / n} \delta_{1}^{-1} Q^{-d_{n} / s}, \quad w \in S_{P}\left(\alpha_{1}\right) .
$$

Summing the last estimate over all polynomials $P_{1} \in \mathcal{P}_{n_{1}}\left(2^{n_{1}} c_{6}^{n_{1} / n} Q^{r_{n} / s}\right)$, we obtain that the measure of $w \in K$ satisfying (50) does not exceed $n c_{5}^{n_{1} / n} Q^{-d_{n} / s} \delta_{1}^{-1}\left(2^{n_{1}+1} c_{6}^{n_{1} / n} Q^{r_{n} / s}+\right.$ $1)^{n_{1}+1}$, which is less or equal to

$$
2^{\left(n_{1}+2\right)\left(n_{1}+1\right)} n \delta_{1}^{-1} c_{6}^{n_{1}\left(n_{1}+1\right) / n} c_{5}^{n_{1} / n} Q^{\left(-n+r_{n} n_{1}\right) n_{1} / n} \leq t \mu(K)
$$

for $n_{1} \geq 2$, sufficiently large c_{7} and sufficiently large Q.
Therefore, further we can assume that $P(w)=P_{1}(w) P_{2}(w)$ where P_{1} and P_{2} does not have common roots.

3.3.2 Polynomials $P(w)=P_{1}(w) P_{2}(w)$ where P_{1} and P_{2} without common roots

For P the set of $w \in K \cap S_{P}\left(\alpha_{1}\right)$ such that $|P(w)|_{p}<c_{5} Q^{-d_{n}}$ we denote by $\lambda(P)$. By Gelfond's lemma 11,

$$
2^{-n} H\left(P_{1}\right) H\left(P_{2}\right)<H(P)<2^{n} H\left(P_{1}\right) H\left(P_{2}\right) .
$$

Let $c_{25} Q^{r_{n_{1}}}<H\left(P_{1}\right) \leq Q^{r_{n_{1}}}, c_{25}<1$. Therefore, $H\left(P_{2}\right)<2^{n} c_{6} c_{25}^{-1} Q^{r_{n}-r_{n_{1}}}$. By the continuity of P there exists $a \in \mathbb{R}$ such that

$$
\begin{equation*}
\mu\left(w \in \lambda(P):\left|P_{1}(w)\right|_{p}<c_{5} Q^{-a}\right)=\mu(\lambda(P)) / 2 \tag{51}
\end{equation*}
$$

Then for the complement to (51) we have

$$
\begin{equation*}
\mu\left(w \in \lambda(P):\left|P_{1}(w)\right|_{p} \geq c_{5} Q^{-a}\right)=\mu(\lambda(P)) / 2 \tag{52}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu\left(w \in \lambda(P):\left|P_{2}(w)\right|_{p}<Q^{-d_{n}+a}\right)=\mu(\lambda(P)) / 2 . \tag{53}
\end{equation*}
$$

Then according to Lemma 5 and by (51), (53) for all $w \in \lambda(P)$ we have

$$
\begin{equation*}
\left|P_{1}(w)\right|_{p}<\left(2 p\left(n_{1}+1\right)\right)^{n_{1}+1} c_{5} Q^{-a},\left|P_{2}(w)\right|_{p}<\left(2 p\left(n-n_{1}+1\right)\right)^{n-n_{1}+1} Q^{-d_{n}+a} \tag{54}
\end{equation*}
$$

For $a>n_{1}+r_{n_{1}}$ we have

$$
\begin{equation*}
\left|P_{1}(w)\right|_{p}<\left(2 p\left(n_{1}+1\right)\right)^{n_{1}+1} c_{5} Q^{-a}, \quad c_{25} Q^{r_{n_{1}}}<H\left(P_{1}\right) \leq Q^{r_{n_{1}}} \tag{55}
\end{equation*}
$$

Then by inductive hypothesis, we obtain that the measure of $w \in K$ for which there is the polynomial $P(w)=P_{1}(w) P_{2}(w)$ with P_{1} satisfying (55) does not exceed $s\left(n_{1}\right) t \mu(K)$ for sufficiently large Q.

For $a<n_{1}+r_{n_{1}}$ we have

$$
\begin{equation*}
\left|P_{2}(w)\right|_{p}<\left(2 p\left(n-n_{1}+1\right)\right)^{n-n_{1}+1} Q^{-d_{n}+a}, \quad H\left(P_{2}\right)<2^{n} c_{6} c_{25}^{-1} Q^{r_{n}-r_{n_{1}}} . \tag{56}
\end{equation*}
$$

Then by inductive hypothesis, we obtain that the measure of $w \in K$ for which there is the polynomial $P=P_{1} P_{2}$ with P_{2} satisfying (56) does not exceed $s\left(n-n_{1}\right) t \mu(K)$ for sufficiently large Q.

Further we consider the case when $a=n_{1}+r_{n_{1}}$. By (49) we have that $\left|P^{\prime}\left(\alpha_{1}\right)\right|_{p}$ takes the small value. Therefore, there exist $l, 2 \leq l \leq n$, roots of P which are close to each other. Let $\delta_{2} \in \mathbb{R}^{+}$which we specify later. Since α_{1} is the nearest root to $w \in \lambda(P)$, reorder the other roots of P so that

$$
\left|\alpha_{1}-\alpha_{2}\right|_{p} \leq \ldots \leq\left|\alpha_{1}-\alpha_{l}\right|_{p}<\delta_{2} \leq\left|\alpha_{1}-\alpha_{l+1}\right|_{p} \leq \ldots \leq\left|\alpha_{1}-\alpha_{n}\right|_{p}, 2 \leq l \leq n
$$

From $P^{\prime}\left(\alpha_{1}\right)=a_{n}\left(\alpha_{1}-\alpha_{2}\right) \ldots\left(\alpha_{1}-\alpha_{n}\right)$ and (49) we have

$$
\begin{equation*}
\left|\alpha_{1}-\alpha_{2}\right|_{p}\left|\alpha_{1}-\alpha_{3}\right|_{p} \ldots\left|\alpha_{1}-\alpha_{l}\right|_{p}<c_{8}^{-1} c_{20} Q^{-\left(n-1+r_{n}\right) / 2} \delta_{2}^{-(n-l)} . \tag{57}
\end{equation*}
$$

Case 1. If $l \geq 3$ then there exist at least two roots of the polynomial P which belong to one of the polynomials P_{1} or P_{2}; say that α_{2} and α_{3} are the roots of P_{1}. From (5) it follows that the roots of P are bounded, i.e. $\left|\alpha_{i}\right|_{p}<c_{26}, 1 \leq i \leq n$. Then

$$
\begin{equation*}
\left|P_{1}^{\prime}\left(\alpha_{2}\right)\right|_{p}=\left|a_{n_{1}}\left(P_{1}\right)\left(\alpha_{2}-\alpha_{3}\right) \prod_{3 \leq s \leq n_{1}}\left(\alpha_{2}-\alpha_{s}^{\prime}\right)\right|_{p}<\delta_{2} c_{26}^{n_{1}-2}, \tag{58}
\end{equation*}
$$

where $P_{1}\left(\alpha_{s}^{\prime}\right)=0$. Since $w \in S_{P}\left(\alpha_{1}\right)$ then, using Lemma 1 , we have

$$
\begin{equation*}
\left|w-\alpha_{2}\right|_{p} \leq \max \left(\left|w-\alpha_{1}\right|_{p},\left|\alpha_{1}-\alpha_{2}\right|_{p}\right)=\max \left(\left(c_{5} Q^{-d_{n}}\right)^{1 / n}, \delta_{2}\right)=\delta_{2} \tag{59}
\end{equation*}
$$

for $Q>Q_{0}$. By 58 and 59 , we get $\left|P_{1}^{\prime}(w)\right|_{p}=\left|\sum_{i=1}^{n_{1}}((i-1)!)^{-1} P_{1}^{(i)}\left(\alpha_{2}\right)\left(w-\alpha_{2}\right)^{i-1}\right|_{p}<$ $\delta_{2} \max \left(1, c_{26}^{n_{1}-2}\right)$. Thus, we have

$$
\begin{gather*}
\left|P_{1}(w)\right|_{p}<\left(2 p\left(n_{1}+1\right)\right)^{n_{1}+1} c_{5} Q^{-\left(n_{1}+r_{n_{1}}\right)}, \quad c_{25} Q^{r_{n_{1}}}<H\left(P_{1}\right) \leq Q^{r_{n_{1}}} \\
\left|P_{1}^{\prime}(w)\right|_{p}<\delta_{2} \max \left(1, c_{26}^{n_{1}-2}\right) \tag{60}
\end{gather*}
$$

Choose $\delta_{2} \leq 2^{-2 n_{1}-10} p^{-n_{1}-3}\left(n_{1}+1\right)^{-\left(n_{1}+1\right)} c_{5}^{-1}\left(\max \left(1, c_{26}^{n_{1}-2}\right)\right)^{-1} t^{2}$. Then by inductive hypothesis, we obtain that the measure of $w \in K$ for which there is the polynomial $P=P_{1} P_{2}$ with P_{1} satisfying 60 does not exceed $s\left(n_{1}\right) t \mu(K)$ for sufficiently large c_{7} and sufficiently large Q.

If at least two roots of P belong to P_{2} then similarly we obtain that the measure of $w \in K$ does not exceed $s\left(n-n_{1}\right) t \mu(K)$ for $Q>Q_{0}$ and sufficiently large c_{7}.

Case 2. Let $l=2$. If α_{1} and α_{2} belong to one polynomial P_{1} or P_{2} then the proof is coincided with the Case 1 . Now assume without loss of generality that α_{1} is a root of P_{1} and α_{2} is a root of P_{2}. In this case for any distinct roots of the polynomials P_{1} and P_{2} we have $\left|\alpha_{i_{1}}\left(P_{j}\right)-\alpha_{i_{2}}\left(P_{j}\right)\right|_{p} \geq \delta_{2}$. Thus,

$$
\begin{equation*}
\left|P_{1}^{\prime}\left(\alpha_{1}\right)\right|_{p}>c_{27} \delta_{2}^{\left(n_{1}-1\right)}, \quad\left|P_{2}^{\prime}\left(\alpha_{2}\right)\right|_{p}>c_{28} \delta_{2}^{\left(n-n_{1}-1\right)} \tag{61}
\end{equation*}
$$

Consider the resultant of the polynomials P_{1} and P_{2} which have no common roots:

$$
R\left(P_{1}, P_{2}\right)=a_{n_{1}}^{n-n_{1}}\left(P_{1}\right) a_{n-n_{1}}^{n_{1}}\left(P_{2}\right)\left(\alpha_{1}-\alpha_{2}\right) \prod_{\substack{1 \leq i \leq n_{1}, 1 \leq j \leq n-n_{1}, \alpha_{i}^{\prime} \neq \alpha_{1}, \alpha_{j}^{\prime} \neq \alpha_{2}}}\left(\alpha_{i}^{\prime}-\alpha_{j}^{\prime \prime}\right),
$$

where $P_{1}\left(\alpha_{i}^{\prime}\right)=0$ and $P_{2}\left(\alpha_{j}^{\prime \prime}\right)=0$. From (57) we have

$$
\left|\alpha_{1}-\alpha_{2}\right|_{p}<c_{8}^{-1} c_{20} Q^{-\left(n-1+r_{n}\right) / 2} \delta_{2}^{-(n-2)} .
$$

Using the fact that the roots of P are bounded and the estimate

$$
\left|a_{n_{1}}^{n-n_{1}}\left(P_{1}\right) a_{n-n_{1}}^{n_{1}}\left(P_{2}\right)\right|<Q^{r_{n_{1}}\left(n-n_{1}\right)}\left(2^{n} c_{6} c_{25}^{-1} Q^{r_{n}-r_{n_{1}}}\right)^{n_{1}}
$$

we get

$$
\begin{align*}
& 2^{-n n_{1}} c_{6}^{-n_{1}} c_{25}^{n_{1}} Q^{-r_{n_{1}}\left(n-n_{1}\right)+n_{1}\left(-r_{n}+r_{n_{1}}\right)} \leq\left|R\left(P_{1}, P_{2}\right)\right|_{p}, \\
& \left|R\left(P_{1}, P_{2}\right)\right|_{p}<c_{8}^{-1} c_{20} c_{26}^{n_{1}\left(n-n_{1}\right)-1} \delta_{2}^{-(n-2)} Q^{-\left(n-1+r_{n}\right) / 2} . \tag{62}
\end{align*}
$$

We have a contradiction in (62) for sufficiently small c_{20} and $r_{n} \leq 1$ if $n=2 n_{1}$ and $r_{n_{1}} \leq \frac{n-1+r_{n}-2 n_{1} r_{n}}{2\left(n-2 n_{1}\right)}$ if $n>2 n_{1}$.

Now we are left with the case when

$$
\begin{equation*}
r_{n_{1}}>\frac{n-1+r_{n}-2 n_{1} r_{n}}{2\left(n-2 n_{1}\right)} \tag{63}
\end{equation*}
$$

with $1 \leq n_{1}<n / 2$. For P_{2} we have

$$
\begin{equation*}
\left|P_{2}(w)\right|_{p}<\left(2 p\left(n-n_{1}+1\right)\right)^{n-n_{1}+1} Q^{-d_{n}+n_{1}+r_{n_{1}}}, \quad P_{2} \in \mathcal{P}_{n-n_{1}}\left(2^{n} c_{6} c_{25}^{-1} Q^{r_{n}-r_{n_{1}}}\right) . \tag{64}
\end{equation*}
$$

By (54), (61) and Lemma 1, we have that

$$
\left|w-\alpha_{2}\right|_{p}<\left(2 p\left(n-n_{1}+1\right)\right)^{n-n_{1}+1} c_{28}^{-1} \delta_{2}^{-\left(n-n_{1}-1\right)} Q^{-d_{n}+n_{1}+r_{n_{1}}+\left(r_{n}-r_{n_{1}}\right)}
$$

for $w \in S_{P_{2}}\left(\alpha_{2}\right)$. Summing the last estimate over all polynomials

$$
P_{2} \in \mathcal{P}_{n-n_{1}}\left(2^{n} c_{6} c_{25}^{-1} Q^{r_{n}-r_{n_{1}}}\right)
$$

and using (63), we obtain that the measure of $w \in K$ for which there is the polynomial $P=P_{1} P_{2}$ with P_{2} satisfying (64) does not exceed

$$
c_{29} Q^{-n+n_{1}+r_{n}\left(n-n_{1}\right)-r_{n_{1}}\left(n-n_{1}\right)}<t \mu(K)
$$

for sufficiently large Q.
Combining all estimates, starting from Proposition 1, we obtain that the measure of $\overline{\mathcal{L}}_{n}$ does not exceed $s(n) t \mu(K)$ with

$$
\begin{equation*}
s(n)=2 n+13+\sum_{k=3}^{n-1} s(k)+\sum_{k=1}^{[n / 2]}(4 s(k)+3 s(n-k)) \quad \text { for } n \geq 3, \tag{65}
\end{equation*}
$$

$s(1)=2$ and $s(2)=14$. Choose $t=l \cdot(s(n))^{-1}$.
Finally, we turn to the proof of Theorem 1 .

4 Proof of Theorem 1

Let $\delta_{0} \in \mathbb{R}^{+}$. Consider the set $\overline{\mathcal{L}}_{n}\left(Q, \delta_{0}, K\right)$ with $d_{n}=n+1$. By Theorem 2 there exists a constant δ_{0}, which satisfies the following property: for any cylinder K in K_{0} there exists a sufficiently large number $Q_{0}=Q_{0}(K)$ such that for $\mu(K)>c_{7} Q_{0}^{-1}$ and sufficiently large constant c_{7}, which does not depend on Q_{0}, and for all $Q>Q_{0}$ we have $\mu\left(\overline{\mathcal{L}}_{n}\left(Q, \delta_{0}, K\right)\right)<l \mu(K)$. For the rest of the proof we may assume that c_{7} is a constant which is greater or equal to $\frac{2 \cdot 3^{n}}{(1-l) \delta_{0}}$ and for which Theorem 2 is valid.

Denote by $\mathcal{L}_{0}(Q, K)$ the set of $w \in K$, for which the inequality $|P(w)|_{p}<Q^{-(n+1)}$ is satisfied for some $P \in \mathcal{P}_{n}(Q)$. It can be readily verified using Dirichlet's box principle that $\mathcal{L}_{0}(Q, K)=K$. By Theorem 2 there exists a set $\mathcal{L}_{n}\left(Q, \delta_{0}, K\right)=K \backslash \overline{\mathcal{L}}_{n}\left(Q, \delta_{0}, K\right) \subset$ K such that $\mu\left(\mathcal{L}_{n}\left(Q, \delta_{0}, K\right)\right) \geq(1-l) \mu(K)$ for all $Q>Q_{0}$, where $Q_{0}>c_{7} \mu(K)^{-1}$.

Denote by $\mathcal{L}_{\leq(n-1)}\left(Q, \delta_{0}, K\right)$ the union of the cylinders $\sigma(\alpha)=\left\{w \in K:|w-\alpha|_{p}<\right.$ $\left.\delta_{0}^{-1} Q^{-(n+1)}\right\}$ over all algebraic numbers in \mathbb{Z}_{p} of degree at most $n-1$ and height at most Q. The number of different cylinders in this union is at most $(2 Q+1)^{n}$ and every cylinder has a measure at most $\delta_{0}^{-1} Q^{-(n+1)}$, therefore we conclude that $\mu\left(\mathcal{L}_{\leq(n-1)}\left(Q, \delta_{0}, K\right)\right) \leq$ $(1-l) \mu(K) / 2$ for $c_{7} \geq \frac{2 \cdot 3^{n}}{(1-l) \delta_{0}}$.

Let $\mathcal{L}_{n}^{\prime}\left(Q, \delta_{0}, K\right)$ be defined by

$$
\mathcal{L}_{n}^{\prime}\left(Q, \delta_{0}, K\right)=\mathcal{L}_{n}\left(Q, \delta_{0}, K\right) \backslash \mathcal{L}_{\leq(n-1)}\left(Q, \delta_{0}, K\right)
$$

Let $w \in \mathcal{L}_{n}^{\prime}\left(Q, \delta_{0}, K\right)$. Then by Hensel's Lemma [17] there is a root $\alpha \in \mathbb{Z}_{p}$ of P such that

$$
\begin{equation*}
|w-\alpha|_{p}<\delta_{0}^{-1} Q^{-(n+1)} \tag{66}
\end{equation*}
$$

If Q is sufficiently large then $\alpha \in K$. Since $w \notin \mathcal{L}_{\leq(n-1)}\left(Q, \delta_{0}, K\right)$ then we conclude that the degree of α is exactly n.

Choose the maximal collection $\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{t}}\right\}$ of algebraic numbers in $K \cap \mathcal{A}_{n, p}$ satisfying

$$
H\left(\alpha_{i}\right) \leq Q, \quad\left|\alpha_{i}-\alpha_{j}\right|_{p} \geq Q^{-(n+1)}, \quad 1 \leq i<j \leq \mathbf{t}
$$

Since the collection $\left\{\alpha_{1}, \ldots, \alpha_{\mathbf{t}}\right\}$ is maximal then there exists α_{i} in this collection such that $\left|\alpha-\alpha_{i}\right|_{p} \leq Q^{-(n+1)}$. From this and (66) it follows that $\left|w-\alpha_{i}\right|_{p}<\delta_{0}^{-1} Q^{-(n+1)}$. As w is an arbitrary point of $\mathcal{L}_{n}^{\prime}\left(Q, \delta_{0}, K\right)$ then

$$
\mathcal{L}_{n}^{\prime}\left(Q, \delta_{0}, K\right) \subset \bigcup_{i=1}^{\mathrm{t}}\left\{w \in K:\left|w-\alpha_{i}\right|_{p}<\delta_{0}^{-1} Q^{-(n+1)}\right\}
$$

Since $\mu\left(\mathcal{L}_{n}^{\prime}\left(Q, \delta_{0}, K\right)\right) \geq(1-l) \mu(K) / 2$, we have $\mathbf{t} \gg Q^{n+1} \mu(K)$. Let $T=Q^{n+1}$ then for any $T \geq T_{0}$, where $T_{0}=\left(c_{7}+1\right)^{n+1} \mu(K)^{-(n+1)}$, there exists a collection $\alpha_{1}, \ldots, \alpha_{\mathbf{t}} \in$ $K \cap \mathcal{A}_{n, p}$ satisfying (1) which completes the proof of the theorem.

Список литературы

[1] A. Baker, W.M. Schmidt, "Diophantine approximation and Hausdorff dimension", Proc. London Math. Soc., 21 (1970), 1-11.
[2] V.V. Beresnevich, "On approximation of real numbers by real algebraic numbers", Acta Arith., 90:2 (1999), 97-112.
[3] V.V. Beresnevich, V.I. Bernik, D.Y. Kleinbock, G.A. Margulis, "Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds", Mosc. Math. J., 2:2 (2002), 203-225.
[4] V. Bernik, N. Budarina, D. Dickinson, "A divergent Khintchine theorem in the real, complex, and p-adic fields", Lith. Math. J., 48:2 (2008), 158-173.
[5] V.V Beresnevich, V.I. Bernik and E.I. Kovalevskaya, "On approximation of p-adic numbers by p-adic algebraic numbers", J. Number Theory., 111:1 (2005), 33-56.
[6] A. Baker, "Dirichlet theorem on Diophantine approximation", Math. Proc. Cam. Phil. Soc., 83:1 (1978), 37-59.
[7] V.I. Bernik, I.L. Morotskaya, "Diophantine approximation in \mathbb{Q}_{p} and Hausdorff dimension", Vestsi Akad. Navuk BSSR Ser. Fiz-Mat nauk., 3 (1986), 3-9, 123.
[8] I.R. Dombrovsky, "Simultaneous approximation of real numbers by algebraic numbers of bounded degree", Dokl. Akad. Nauk BSSR, 3 (1989), 205-208.
[9] Y.V. Melnichuk, "Diophantine approximation on curves and Hausdorff dimension", Mat. Zametki, 26 (1979), 347-354.
[10] D.V. Vasilyev, "Diophantine sets in \mathbb{C} and Hausdorff dimension", Inst. Math., Belarus. Acad. Sc., 1997, 21-28.
[11] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004..
[12] V. V. Beresnevich, "Effective estimates for measures of sets of real numbers with a given order of approximation by quadratic irrationalities", Vestsi Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk., 4 (1996), 10-15.
[13] V. Bernik, F. Götze, O. Kukso, "Regular systems of real algebraic numbers of third degree in small intervals", Anal. Probab. Methods Number Theory, ed. A. Laurinchikas et., 2012, 61-68.
[14] V. Bernik, F. Götze, "Distribution of real algebraic numbers of arbitrary degree in short intervals", Izv. Math., 79:1 (2015), 18-39.
[15] V. Sprindžuk, Mahler's problem in the metric theory of numbers, Amer. Math. Soc., 25, Providence, RI, 1969.
[16] V.I. Bernik, N. Kalosha, "Approximation of zero by values of integral polynomials in space $\mathbb{R} \times \mathbb{C} \times \mathbb{Q}_{p} "$, Vesti NAN of Belarus. Ser. fiz-mat nauk., 1 (2004), 121-123.
[17] V.I. Bernik, M.M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, Vol. 137, Cambridge University Press, Cambridge, 1999.

The first author was partially supported by EPSRC (grant EP/J018260/1) and Joint project of the Russian Foundation for Basic Research and the Belarusian Republican Foundation for Basic Research (grant \#14-01-90002). The second author was supported by EPSRC (grant EP/J018260/1).

Бударина Н. В., Гетче Ф. Регулярные системы алгебраических p-адических чисел произвольной степени в малых цилиндрах. Дальневосточный математический журнал. 2015. Том 15. № 2. C. 133-155.

АННОТАЦИЯ

В данной статье мы доказываем, что для достаточно больших чисел $Q \in \mathbb{N}$ существуют цилиндры $K \subset \mathbb{Q}_{p}$ с мерой Хаара $\mu(K) \leq \frac{1}{2} Q^{-1}$, которые не содержат алгебраических p-адических чисел α степени $\operatorname{deg} \alpha=n$ и высоты $H(\alpha) \leq Q$. Основной результат показывает, что в любом цилиндре $K, \mu(K)>c_{1} Q^{-1}, c_{1}>c_{0}(n)$, существует не менее $c_{3} Q^{n+1} \mu(K)$ алгебраических p-адических чисел $\alpha \in K$ степени n и $H(\alpha) \leq Q$.
Ключевые слова: щелочисленные многочлены, алгебрачческие pадические числа, регулярная система, мера Хаара.

[^0]: ${ }^{1}$ Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia, Dzerzhinsky st., 54; Faculty of Mathematics, University of Bielefeld, P. O. Box 1001 31, 33501 Bielefeld, Germany . E-mail: buda77@mail.ru, goetze@math.uni-bielefeld.de

