УДК 517.95 MSC2010 35A01, 35K61, 35K65

© А. Г. Подгаев, Н. Е. Истомина¹

О методах Фаэдо — Галёркина и монотонности в нецилиндрической области для вырождающегося квазилинейного уравнения

Разрабатывается модификация метода монотонности в естественных координатах без сведения задачи заменой переменных к случаю цилиндрической области. Построено семейство базисов, гладких по параметру, ортогональных и полных на каждом сечении области. Обосновано существование и единственность решения первой начально-краевой задачи для общей нецилиндрической области в многомерном случае.

Ключевые слова: нецилиндрическая область, метод монотонности, построение семейства базисов, квазилинейное уравнение.

Введение

Параболические задачи в нецилиндрических областях хорошо исследованы для линейных уравнений, причем в основном с одной пространственной переменной. Это работы [1–4]. Для случая многомерных уравнений предложена схема исследования в [5] с трудно проверяемыми условиями. Сведением задач заменой переменных к цилиндрическому случаю проведены исследования в [6–8]. В [9] и [10] предложен метод штрафа для гиперболических уравнений в расширяющейся с течением времени области, а в [9] также предложен и метод эллиптической регуляризации, позволяющие исследовать многомерные нелинейные задачи без замены переменных. Попытка перенести метод Фаэдо – Галеркина на случай нецилиндрических областей приводит к необходимости построения семейств функций, которые были бы базисами в пространствах $L_p(\Omega_t)$ для всех t, где Ω_t — сечение нецилиндрической области плоскостью t = const. В [11] предложен метод компактности для исследования квазилинейных параболических уравнений в нецилиндрических областях, в

¹Тихоокеанский государственный университет, 680035, Хабаровск, ул. Тихоокеанская, 136. Хабаровский пограничный институт Федеральной службы безопасности Российской Федерации, 680017, г. Хабаровск, ул. Большая, 85. Электронная почта: podgaev@mail.ru

котором трудность обоснования базисности снимается в силу одномерности уравнения.

В данной работе предложена модификация метода монотонности без сведения рассматриваемой задачи заменой переменных к случаю цилиндрической области. Построено семейство базисов, ортогональных и полных на каждом сечении области. Установлены необходимые для переноса метода Фаэдо – Галеркина на случай нецилиндрических областей вспомогательные утверждения о плотности семейств функций вида $\sum_{i,j} \alpha_{ij} c_i(t) \omega_j(x,t)$. На примере вырождающегося при $\nabla u = 0$ и нелинейного по градиенту уравнения продемонстрировано, какие изменения и обобщения нужно внести в метод монотонности для его успешного применения. Обосновано существование и единственность решения первой начально-краевой задачи для общей нецилиндрической области. Это является основным результатом работы.

1. Описание области

Пусть $\bar{Q}_T = \bigcup_{t \in [0,T]} \{\bar{D}_t \times t\}$. $\bar{B} = \{y \in R^n : |y| \le 1\}$ — замкнутый шар в R^n . $\varphi(x,t) = (\varphi^1,\varphi^2,\ldots,\varphi^n)$ — семейство диффеоморфизмов $\bar{D}_t \to \bar{B},\,t$ — параметр. $\psi(y,t) = (\psi^1,\psi^2,\ldots,\psi^n)$ — семейство обратных отображений $\bar{B} \to \bar{D}_t \subset R^n$. Будем предполагать, что $\varphi \in C^1(\bar{Q}_T),\,\nabla_x\varphi^i \in C^1(\bar{Q}_T)$ и в \bar{Q}_T якобиан I(x,t) матрицы элементов $\varphi^i_{x_j}(x,t)$ отличен от нуля. Тогда якобиан J(y,t) обратной матрицы из элементов $\psi^i_{y_i}(y,t)$ не равен нулю в $\bar{B} \times [0,T]$.

элементов $\psi^{\bar{i}}_{y_j}(y,t)$ не равен нулю в $\bar{B} \times [0,T].$ Очевидно, $Q_T = \bigcup_{t \in (0,T)} \{D_t \times t\}$ — область и \bar{Q}_T — ее замыкание в $R^{n+1}.$

2. Построение базисов и полных систем функций

Во всей работе рассматриваются вещественнозначные функции. В этом и следующем пунктах считаем $p\geq \frac{2n}{2+n}$. Тогда $W^1_p(D_t)\subset L_2(D_t)$. Для n=1 и 2 считаем p>1. Зафиксируем натуральное s и определим $\tilde{\omega}_j(y)$ как последовательность решений спектральной задачи:

$$(\tilde{\omega}_j, v)_{\overset{\circ}{H^s(B)}} = \lambda_j(\tilde{\omega}_j, v)_{L_2(B)}$$
 для любого $v \in \overset{\circ}{H^s(B)}$,

где λ_j — соответствующие функциям $\tilde{\omega}_j(y)$ собственные значения. $\{\tilde{\omega}_j(y)\}$ — ортогональный базис в $L_2(B)$ и в $\overset{\circ}{H^s}(B)$ ([12, с. 23], [9, с. 87]). Ортонормируем его в $L_2(B)$.

Выберем и зафиксируем s таким, что $\overset{\circ}{H^s}(B) \subset C^1(\bar{B}) \cap C_0(\bar{B})$, индекс 0 у C означает равенство нулю на ∂B . Тогда $\overset{\circ}{H^s}(B) \subset \overset{\circ}{W^1_p}(B)$.

Лемма 1. Система функций $\{\tilde{\omega}_j(y)\}$ полна в пространстве $\overset{\circ}{W}^1_p(B)$.

Доказательство очевидно и основано на вложениях $\overset{\circ}{H^s}(B)\subset \overset{\circ}{W^1_n}(B)\subset L_2(B)\subset$ $W_{n'}^{-1}(B) \subset H^{-s}(B)$ и плотности первого.

В дальнейшем двойственность между симметричными пространствами цепочки предыдущих вложений будем обозначать $\langle \cdot, \cdot \rangle$.

Следствие. Линейные комбинации $\Sigma_1^N c_j \tilde{\omega}_j(y), c_j \in R$ плотны в $\overset{\circ}{W}_n^1(B)$.

Лемма 2. Если $\{c_i(t)\}_{i=1}^\infty$ полная система функций в $L_p(0,T)$, то система функций $\{c_i(t)\tilde{\omega}_j(y)\}_{i,j=1}^{\infty}$ — полная в $L_p(0,T;W_p^1(B))$.

Доказательство проводится стандартным способом с использованием равенства $\left(L_p(0,T;\overset{\circ}{W_p^1}(B))\right)^* = L_{p'}(0,T;W_{p'}^{-1}(B))$ [13, с. 159] и леммы 1.

Следствие. Линейные комбинации функций $c_i(t)\tilde{\omega}_j(y)$ всюду плотны в пространстве $L_p(0,T;W^1_p(B))$.

Замечание 1. Утверждения лемм 1 и 2 хорошо известны.

Построим системы, полные в $\overset{\circ}{W_{p}^{1}}\left(D_{t}\right)$ при каждом $t\in\left[0,T\right]$. Рассмотрим систему функций

$$\omega_j(x,t) \stackrel{\text{def}}{=} \tilde{\omega}_j \bigg(\varphi(x,t) \bigg) |I|^{\frac{1}{2}}, \quad j = 1, 2, \dots$$

Очевидно, она ортонормирована в $L_2(D_t)$ и полна в нем. Последнее выводится с помощью замены переменных в соответствующих интегралах, определяющих ор-

Пусть $\overset{\circ}{W_p^1}(D_t)$ – замыкание $C_0^{\infty}(D_t)$ по норме $\|\cdot\|_{W_p^1(D_t)}^p = \|\cdot\|_{L_p(D_t)}^p + \|\nabla_x\cdot\|_{L_p(D_t)}^p$.

Теорема 1. Для любого фиксированного $t \in [0,T]$ система функций $\{\omega_j(x,t)\}$ переменной x полна в пространстве $\overset{\circ}{W}_{p}^{1}(D_{t})$.

Доказательство. Пусть задана функция переменной x и параметра t $u(x,t) \in$ $W^1_p\left(D_t\right)$. Достаточно доказать, что u(x,t) можно приблизить линейными комбинациями вида $\sum_{j=1}^{m} c_j(t)\omega_j(x,t)$. Определим $\bar{u}(y,t) = u(\psi(y,t),t)|J|^{\frac{1}{2}}$. В силу следствия

леммы 1 $\bar{u}(y,t)$ можно приблизить комбинациями $\sum_{i=1}^m c_j(t)\tilde{\omega}_j(y)$ в норме $\overset{\circ}{W^1_p}(B)$. Кроме того, имеют место оценки

$$\int_{D_{t}} \left| u - \sum_{j=1}^{m} c_{j}(t) \omega_{j}(x,t) \right|^{p} dx = \int_{B} \left| u(\psi(y,t),t) - \sum_{j=1}^{m} c_{j}(t) \tilde{\omega}_{j}(y) |I|^{\frac{1}{2}} \right|^{p} |J| dy =$$

$$= \int_{B} \left| u(\psi(y,t),t) |J|^{\frac{1}{2}} - \sum_{j=1}^{m} c_{j}(t) \tilde{\omega}_{j}(y) \right|^{p} |J|^{1-\frac{p}{2}} dy \le \mu \int_{B} \left| \bar{u}(y,t) - \sum_{j=1}^{m} c_{j}(t) \tilde{\omega}_{j}(y) \right|^{p} dy,$$

$$\int_{D_{t}} \left| \frac{\partial}{\partial x_{i}} \left(u - \sum_{j=1}^{m} c_{j} \omega_{j} \right) \right|^{p} dx = \int_{B} \left| \sum_{k=1}^{m} \left(\frac{\partial}{\partial y_{k}} (\bar{u} |I|^{\frac{1}{2}} - \sum_{j=1}^{m} c_{j} \tilde{\omega}_{j} |I|^{\frac{1}{2}}) \right) \varphi_{kx_{i}} \right|^{p} |J| dy \leq$$

$$\leq (2n)^{p} \int_{B} \sum_{k=1}^{m} \left\{ \left| \frac{\partial}{\partial y_{k}} (\bar{u} - \sum_{j=1}^{m} c_{j} \tilde{\omega}_{j}) |I|^{\frac{1}{2}} \right|^{p} + \left| \frac{\partial}{\partial y_{k}} (|I|^{\frac{1}{2}}) \right|^{p} \cdot \left| \bar{u} - \sum_{j=1}^{m} c_{j} \tilde{\omega}_{j} \right|^{p} |\varphi_{kx_{i}}|^{p} \right\} |J| dy \leq$$

$$\leq (2n)^{p} M(p) \left\{ \int_{B} \left| \nabla_{y} (\bar{u} - \sum_{j=1}^{m} c_{j} \tilde{\omega}_{j}) \right|^{p} dy + \int_{B} |\bar{u} - \sum_{j=1}^{m} c_{j} \tilde{\omega}_{j}|^{p} dy \right\} \leq$$

$$\leq (2n)^{p} M(p) \left\| \bar{u} - \sum_{j=1}^{m} c_{j} \tilde{\omega}_{j} \right\|_{\mathring{W}_{p}^{1}(B)}^{p}.$$

Всюду плотность линейных комбинации функций $\omega_j(x,t)$ в $\overset{\circ}{W}_p^1(D_t)$ для любого t эквивалентна полноте $\{\omega_j\}$ в $\overset{\circ}{W}_p^1(D_t)$. Теорема доказана.

Определим $L_p(t; \overset{\circ}{W^1_p}(D_t))$ как пространство вещественнозначных функций ϑ переменных (x,t) таких, что $\vartheta(\cdot,t) \in \overset{\circ}{W^1_p}(D_t)$ для почти всех $t \in [0,T]$, с конечной нормой $\|\vartheta\|_{L_p(t;\overset{\circ}{W^1_p}(D_t))}^p \stackrel{def}{=} \int\limits_0^T \int\limits_{D_t} (|\vartheta|^p + |\nabla_{\!x}\vartheta|^p) \, dx dt = \int\limits_0^T \|\vartheta\|_{\overset{\circ}{W^1_p}(D_t)}^p \, dt.$

Теорема 2. Если система $\{c_i(t)\}$ полна в $L_p(0,T)$, то линейные комбинации функций $c_i(t)\omega_j(x,t)$ всюду плотны в $L_p(t;\overset{\circ}{W}^1_p(D_t))$.

Доказательство аналогично доказательству теоремы 1. Определим пространство $W^{1,1}_{p,p'}(Q_T)$ как замыкание по норме

$$||v||_{W^{1,1}_{p,p'}(Q_T)} = \left(\int_0^T ||v||^p_{W^1_p(D_t)} dt\right)^{\frac{1}{p}} + \left(\int_0^T ||v_t||^{p'}_{L_{p'}(D_t)} dt\right)^{\frac{1}{p'}}$$

всех функций v из $C^1(\bar{Q}_T)$, равных нулю на "боковой" поверхности $S = \bigcup_{t \in [0,T]} \{\partial D_t \times t\}$. Здесь v_t — обобщенная производная в смысле Соболева.

Теорема 3. Eсли $c_i(t)$ — произвольные функции из $L_p(0,T)$, для которых $c_i' \in L_{p'}(0,T)$, то линейные комбинации функций $c_i(t)\omega_j(x,t)$ всюду плотны в $W^{1,1}_{p,p'}(Q_T)$. Доказательство. Исходим из того, что линейные комбинации функций $c_i(t)\tilde{\omega}_j(y)$ плотны в $W^{1,1}_{p,p'}(B\times(0,T))$, [14]. Поэтому если какая-либо функция $\bar{F}(y,t)$ принадлежит $W^{1,1}_{p,p'}(B\times(0,T))$, то найдутся α^k_{ij},c_i :

$$\bar{F}_k(y,t) = \sum_{i,j=1}^k \alpha_{ij}^k c_i(t) \tilde{\omega}_j(y) \to \bar{F}(y,t) \text{ при } k \to \infty \text{ в } L_p(0,T; W_p^1(B)), \tag{1}$$

$$\bar{F}_{kt}(y,t) = \sum_{i,j=1}^{k} \alpha_{ij}^{k} c_i'(t) \tilde{\omega}_j(y) \to \bar{F}_t(y,t) \text{ при } k \to \infty \text{ в } L_{p'}(0,T; L_{p'}(B)).$$
 (2)

теорем 1 и 2 получим сходимость F_k к F в пространстве $L_p(t; \overset{\circ}{W}_p^1(D_t))$ при $k \to \infty$. Докажем, что $F_{kt} \to F_t$ в $L_{p'}(Q_T)$. Действительно,

$$\begin{split} &\int\limits_{0}^{T} \int\limits_{D_{t}} \left| F_{t} - F_{kt} \right|^{p} dx dt = \int\limits_{0}^{T} \int\limits_{B} \left| \bar{F}_{t} \left| I \right|^{\frac{1}{2}} + \bar{F} \left(|I|^{\frac{1}{2}} \right)_{t} - \left(\sum_{i,j=1}^{k} \alpha_{ij}^{k} c_{i}(t) \, \tilde{\omega}_{j} |I|^{\frac{1}{2}} \right)_{t} \right|^{p} |J| dy dt = \\ &= \int\limits_{0}^{T} \int\limits_{B} \left| \left(\bar{F}_{t} - \sum_{i,j=1}^{k} \alpha_{ij}^{k} c_{i}'(t) \, \tilde{\omega}_{j}(y) \right) |I|^{\frac{1}{2}} + \left(\bar{F} - \sum_{i,j=1}^{k} \alpha_{ij}^{k} c_{i}(t) \, \tilde{\omega}_{j}(y) \right) (|I|^{\frac{1}{2}})_{t} \right|^{p} |J| dy dt \leq \\ &\leq 2^{p} \mu_{1} \int\limits_{0}^{T} \int\limits_{B} |\bar{F}_{t} - \bar{F}_{kt}|^{p} \, dy dt + 2^{p} \mu_{2} \int\limits_{0}^{T} \int\limits_{B} |\bar{F} - \bar{F}_{k}|^{p} \, dy dt \to 0 \ \text{при } k \to \infty. \end{split}$$

Следствие. Используя формулу замены переменных, выводим, что для любой функции $\varphi \in C^1[0,T]$ и любой функции $u \in L_p(Q_T)$ при $k \to \infty$

$$\int_{0}^{T} \int_{D_{t}} (F_{kt}u\varphi + F_{k}u\varphi') dxdt \to \int_{0}^{T} \int_{D_{t}} (F_{t}u\varphi + Fu\varphi') dxdt.$$

Определение. Назовем "функцию" (и обозначим её u_t), производной по t функции u из пространства $L_p(t; W^1_p(D_t))$, если для всех $F \in W^{1,1}_{p,p'}(Q_T)$ и $\varphi \in C_0^\infty(0,T)$ выполнено тождество

$$\int_{0}^{T} \langle u_{t}, F \rangle \varphi(t) dt \stackrel{def}{=} - \int_{0}^{T} \left(\int_{D_{t}} uF dx \right) \varphi'(t) dt - \int_{0}^{T} \int_{D_{t}} F_{t} u \varphi(t) dx dt.$$

В силу плотности вложений цепочки из леммы 1 с помощью предельного перехода можно считать, что в данном определении $F \in L_p(t; \overset{\circ}{W}^1_p(D_t))$, а $F_t \in L_{p'}(t; W^{-1}_{p'}(D_t))$. При этом последнее слагаемое надо записать в виде $\int\limits_0^T \langle F_t, u \rangle \varphi \, dt$ и учесть, что $u \in L_p(t; \overset{\circ}{W}^1_p(D_t))$.

Определим пространство $H(Q_T)$ как замыкание по норме

$$\|\cdot\|_{H(Q_T)} = \left(\int_{0}^{T} \|\cdot\|_{W_{p}^{1}(D_t)}^{p} dt\right)^{\frac{1}{p}} + \left(\int_{0}^{T} \|\frac{\partial}{\partial t}\cdot\|_{W_{p'}^{-1}(D_t)}^{p'} dt\right)^{\frac{1}{p'}}$$

множества функций из $C^1(\bar{Q}_T)$, равных нулю на "боковой" поверхности S.

Теорема 4. Вложение $W^{1,1}_{p,p'}(Q_T) \subset H(Q_T)$ плотно.

Доказательство. Как включение множеств это следует из цепочки включений леммы 1. Из определения $H(Q_T)$ следует, что для любого u из $H(Q_T)$ и заданного n найдется элемент $u_m \in C^1(\bar{Q}_T), \ u_m|_S = 0,$ такой, что $\|u - u_m\|_{H(Q_T)} \leq \frac{1}{n}$. Так как $u_m \in W^{1,1}_{p,p'}(Q_T)$, то по теореме 3 найдется $F_{k(n)}$ такое, что

$$\left(\int_{0}^{T} \|u_{m} - F_{k(n)}\|_{\dot{W}_{p}^{1}(D_{t})}^{p} dt\right)^{\frac{1}{p}} + \left(\int_{0}^{T} \|u_{mt} - F_{k(n)t}\|_{L_{p'}(D_{t})}^{p'} dt\right)^{\frac{1}{p'}} \leq \frac{1}{n}.$$

А так как

$$\int_{0}^{T} \|u_{mt} - F_{k(n)t}\|_{W_{p'}^{-1}(D_t)}^{p'} dt \le \int_{0}^{T} \|u_{mt} - F_{k(n)t}\|_{L_{p'}(D_t)}^{p'} dt,$$

то $||u_m - F_{k(n)}||_{H(Q_T)} \le \frac{1}{n}$. Следовательно, $||u - F_{k(n)}||_{H(Q_T)} \le \frac{2}{n}$.

3. Леммы о дифференцировании по параметру t интегралов по сечениям

Лемма 3. Пусть функция $f_1(x,t) \in C^1(\bar{Q}_T)$ и $f_1(x,t) = 0$ на боковой поверхности S. Определим множество $D = \bigcup_{t \in (0,T)} D_t$. Пусть замыкание $\bar{D} \subset \tilde{D}$, где \tilde{D} — некоторая область. Определим функцию переменной x $\bar{f}_1(x,t) = f_1(x,t)$ для $x \in D_t$ и $\bar{f}_1(x,t) = 0$ для $x \in \tilde{D} \setminus D_t$. Тогда 1) $\bar{f}_1(x,t) \in \mathring{W}^1_p(\tilde{D})$ для любого $t \in [0,T]$; 2) $\bar{f}_1(x,t) \in W^1_p(\tilde{D} \times (0,T))$; 3) $\frac{d}{dt} \int_{D_t} f_1(x,t) \, dx = \int_{D_t} f_{1t}(x,t) \, dx$.

Доказательство. 1) следует из леммы [15, с. 49]. 2) следует из определения обобщенной производной и ее оценки как функционала на $L_p(\tilde{D} \times (0,T))$. 3) следует из 2) и аналогичной 3) формулы для случая, когда область интегрирования по переменной x не зависит от t. Детали доказательства можно найти в [16, с. 11]. \square

Лемма 4. Пусть $u, F \in H(Q_T)$. Тогда $\langle F, u \rangle = \int\limits_{D_t} Fu \, dx$ имеет суммируемую производную по t, функция $\int\limits_{D_t} Fu \, dx$ непрерывна по t и справедлива формула

$$\frac{d}{dt}\langle F, u \rangle = \langle F_t, u \rangle + \langle u_t, F \rangle. \tag{3}$$

Доказательство, приведенное в [16, с. 31], основано на предыдущих теоремах о плотности, свойстве 3) леммы 3 и предельном переходе в выражениях типа $\int\limits_0^T \langle\cdot,\cdot\rangle\varphi(t)dt$ и $\int\limits_0^T \langle\cdot,\cdot\rangle\varphi'(t)dt$.

4. Постановка задачи и формулировка результата

В нецилиндрической области Q_T требуется найти решение u=u(x,t) уравнения

$$u_t(x,t) - \sum_{i=1}^n \frac{\partial}{\partial x_i} a(u_{x_i}(x,t)) = f(x,t), \tag{4}$$

удовлетворяющее однородным граничным условиям на "боковой" поверхности $S = \bigcup_{t \in [0,T]} \{\partial D_t \times t\}$ и начальному условию при t=0.

Функция $a(\xi)$ определена и непрерывна на R и удовлетворяет:

I. Условию монотонности. $a(\xi)$ – не убывает.

II. Условию на рост. $|a(\xi)| \le c_1 |\xi|^{p-1} + c_2, p > 1.$

III. Условию эллиптичности. $a(\xi) \cdot \xi \ge \nu |\xi|^p - \mu$, где $\nu > 0, \ \mu \ge 0$.

Условия на входные данные. Функция $u_0(x) \in L_2(D_0)$. $||f||_{L_2(D_t)} \in L_\infty(0,T)$ и для каждой $g \in C^1(\bar{Q}_T)$ функция $\int\limits_{D_t} f(x,t) g(x,t) dx$ непрерывна на [0,T].

Определение. Функция $u \in L_p(t; \overset{\circ}{W_p^1}(D_t)), \ makas, \ umo \ vrai \max_{t \in [0,T]} \|u\|_{L_2(D_t)} < \infty,$ называется обобщенным решением задачи, если для любой функции $\varphi \in C_0^\infty(0,T)$ и любой функции $F \in C^1(\bar{Q}_T)$, обращающейся в нуль на S, выполнено интегральное тождество

$$-\int_{0}^{T} \left(\int_{D_{t}} uF \, dx \right) \varphi' dt - \int_{0}^{T} \int_{D_{t}} uF_{t}\varphi \, dx dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} a(u_{x_{i}})F_{x_{i}} \, dx \right) \varphi \, dt = \int_{0}^{T} \int_{D_{t}} fF\varphi \, dx dt, \quad (5)$$

а для любых $\omega_i(x,t)$, построенных в пункте 2, выполнено условие

$$\int_{D_t} u(x,t)\omega_j(x,t) dx \to \int_{D_0} u_0(x)\omega_j(x,0) dx \quad npu \ t \to 0.$$
 (6)

Теорема 5. При указанных выше на функции a, u_0, f предположениях уравнение (4) имеет обобщенное решение u(x,t), причем функция $\langle u(\cdot,t), F(\cdot,t) \rangle$ непрерывна по $t \in [0,T]$ для любой функции F из $C^1(\bar{Q}_T)$, обращающейся в нуль на S.

В силу отсутствия суммируемых следов при t = const у обобщенного решения из теоремы 5 и нестандартного требования выполнения начального условия, требуется обосновать, что в указанном классе сохраняется единственность решения.

Теорема 6. При выполнении условиий теоремы 5 в классе функций $H(Q_T)$ может существовать не более одного решения задачи.

Доказательство теоремы 6 изложено в работе [17]. Она гарантирует обоснованность замены наличия суммируемого следа при t = const у решения на его наличие у интегралов по сечениям (они, после изменения на множестве меры 0, оказываются просто непрерывными по t функциями), а также замены выполнения начального условия в смысле следов требованием (6).

5. Построение и оценка приближенного решения

Приближенное решение $u_m = u_m(x,t)$ задачи будем искать $u_m(x,t) = \sum_{k=1}^m c_k{}^m(t) \, \omega_k(x,t)$, исходя из требования

$$\langle u_{mt}, \omega_j \rangle + \langle A(t)u_m, \omega_j \rangle = \langle f, \omega_j \rangle, \quad j = 1, ..., m$$
 (7)

и условия $c_j{}^m(0)=c_j$, где $c_j=\int\limits_{D_0}u_0(x)\omega_j(x,0)\,dx$. Здесь оператор

$$A(t)u = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} a(u_{x_i}), \qquad A(t) : W_p^{-1}(D_t) \to W_{p'}^{-1}(D_t).$$

Существование глобального решения $\vec{c}(t) = (c_1{}^m(t), ..., c_m{}^m(t))$ системы (7) из класса $W_2^1(0,T)$ следует из леммы Вишика — Дубинского [14, с. 67], обобщение которой на случай неоднородных начальных условий можно найти в [16, с. 8], а на случай не непрерывных суммируемых коэффициентов (конкретно в данной работе на случай f из $L_2(Q_T)$) — в [18].

Из (7) нетрудно получить

$$\langle u_{mt}, u_m \rangle + \langle A(t)u_m, u_m \rangle = \langle f, u_m \rangle.$$
 (8)

Первое слагаемое в (8) по лемме 3 можно представить в виде

$$\langle u_{mt}, u_m \rangle = \int_{D_t} u_{mt} u_m \, dx = \frac{1}{2} \frac{d}{dt} ||u_m||_{L_2(D_t)}^2.$$

Применив ко второму слагаемому согласованность из доказательства леммы 1

и условие III, получим $\langle A(t)u_m, u_m \rangle \geq \nu c \|\nabla_{\!x} u_m\|_{L_p(D_t)}^p - n\mu |D_t|$. Оценив правую часть (8) $|\langle f, u_m \rangle| \leq \frac{1}{2} \operatorname{vrai} \max_{t \in [0,T]} \|f\|_{L_2(D_t)}^2 + \frac{1}{2} \|u_m\|_{L_2(D_t)}^2$ и использовав неравенство Гронуолла, получим

$$||u_m||_{L_2(D_t)}^2 + c_0 \int_0^t ||\nabla_x u_m||_{L_p(D_\tau)}^p d\tau \le \left(||u_m(x,0)||_{L_2(D_0)}^2 + M_1 t - M_1 \right) e^t + M_1 (1+t).$$

Так как $c_j^m(0) = c_j$, то $||u_m(x,0)||^2 \le \sum_{j=1}^\infty c_j^2 = ||u_0(x)||^2$. Поэтому, найдётся не зависящая от n постоянная c(T), такая, что

$$||u_m||_{L_2(D_t)}^2 + c_0 \int_0^t ||\nabla_x u_m||_{L_p(D_\tau)}^p d\tau \le c(T),$$
(9)

в частности, $||u_m||^2_{L_{\tilde{p}}(D_t)} \le \tilde{c}(T)$ для любого $1 \le \tilde{p} \le 2$.

Для оценки u_m в $L_p(Q_T)$, p>2 воспользуемся мультипликативным неравенством [19, с. 78] $\|u_m\|_{L_p(D_t)} \le \beta \|\nabla_x u_m\|_{L_p(D_t)}^{\alpha} \|u_m\|_{L_2(D_t)}^{1-\alpha}$, $\alpha \in (0,1)$, неравенством Юнга, оценкой (9). Интегрируя по t, получим

$$||u_m||_{L_p(Q_T)}^p \le \beta^p \left(\alpha \int_0^T ||\nabla_x u_m||_{L_p(D_t)}^p dt + M_2 T\right) \le M_3.$$
 (10)

6. Предельный переход

Очевидно, что оператор $A(t)\colon \overset{\circ}{W_p^1}(D_t)\to W_{p'}^{-1}(D_t)$ монотонный, семинепрерывный для всех $t \in [0,T]$ и ограниченный. Точнее, существуют, причем не зависящие от t константы c_3, c_4 , такие, что

$$||A(t)u||_{W_{p'}^{-1}(D_t)} \le c_3 ||\nabla_x u||_{L_p(D_t)}^{p-1} + c_4.$$
(11)

Пемма 5. Из построенной выше последовательности $\{u_m\}$ можно извлечь nodnocледовательность, снова обозначаемую $\{u_m\}$, такую, что для некоторых элементов $u, u_{x_i} \in L_p(Q_T), \ \chi_i \in L_{p'}(Q_T) \ (i = 1, ..., n), \ \chi \in \left(L_p(t; \overset{\circ}{W^1_p}(D_t))\right)^{\tau} \ u$ $\zeta \in L_2(D_T)$ справедливы следующие предельные соотношения при $m \to \infty$:

$$u_m \to u$$
 слабо в $L_p(Q_T)$, (12)

$$u_{mx_i} \to u_{x_i}$$
 слабо в $L_p(Q_T)$, (13)

$$a(u_{mx_i}) \to \chi_i$$
 слабо в $L_{p'}(Q_T)$, (14)

$$A(t)u_m \to \chi \ \text{слабо } e \left(L_p(t; \overset{\circ}{W}_p^1(D_t))\right)^*,$$
 (15)

$$u_m(x,T) \to \zeta(x)$$
 слабо в $L_2(D_T)$. (16)

Доказательство. Из оценки (9) и условия II на рост функции а выводится равномерная оценка

$$||a(u_{mx_i})||_{L_{p'}(Q_T)}^{p'} \le c_5. \tag{17}$$

Оценки (9), (10), (17) дают возможность из последовательности $\{u_m\}$ извлечь подпоследовательность, снова обозначаемую через $\{u_m\}$, такую, что (12)–(14), (16)выполнены. Очевидно, $u \in L_p(t; W^1_p(D_t))$.

Для обоснования (15) воспользуемся (11) и неравенством Гельдера: для любой $\vartheta \in L_p(t; \overset{\circ}{W}_p^1(D_t))$

$$\begin{split} |\langle\!\langle A(t)u_{m},\vartheta\rangle\!\rangle| &\stackrel{def}{=} \left| \int\limits_{0}^{T} \langle A(t)u_{m},\vartheta\rangle\,dt \right| \leq \left(\int\limits_{0}^{T} \|A(t)u_{m}\|_{W_{p'}^{-1}(D_{t})}^{p'}dt \right)^{\frac{1}{p'}} \left(\int\limits_{0}^{T} \|\vartheta\|_{W_{p}^{1}(D_{t})}^{p}dt \right)^{\frac{1}{p}} \leq \\ &\leq \left(\int\limits_{0}^{T} 2^{p'} (c_{3}^{p'} \|\nabla_{x}u_{m}\|_{L_{p}(D_{t})}^{p} + c_{4}^{p'})\,dt \right)^{\frac{1}{p'}} \|\vartheta\|_{L_{p}(t;\mathring{W}_{p}^{1}(D_{t}))} \leq c_{6} \|\vartheta\|_{L_{p}(t;\mathring{W}_{p}^{1}(D_{t}))}. \end{split}$$

Учитывая сепарабельность $L_p(t; W_p^1(D_t))$, применяя теорему 3 из [20, с. 199], получаем сходимость (15).

Очевидно, что в смысле распределений выполнено равенство $\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \chi_i = -\chi$.

Используем эти факты для обоснования предельного перехода в интегральном тождестве. Умножим (7) на произвольные $\alpha_{ij} b_i(t)$, где $b_i(t) \in C^1[0,T]$, и просуммируем по i и j от 1 до k, обозначая $F_k = \sum_{i,j=1}^k \alpha_{ij} b_i(t) \omega_j(x,t)$. Получим тождество $\langle u_{mt}, F_k \rangle + \langle A(t) u_m, F_k \rangle = \langle f, F_k \rangle$. Очевидно, что $F_k \in C^1(\bar{Q}_T)$, $F_k = 0$ на S.

Умножая последнее тождество на $\varphi(t) \in C^1[0,T]$, интегрируя по t от 0 до T и используя свойство 3 леммы 3, получаем, интегрируя по частям,

$$-\int_{0}^{T} \left(\int_{D_{t}} u_{m} F_{k} dx \right) \varphi'(t) dt - \int_{0}^{T} \left(\int_{D_{t}} u_{m} F_{kt} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} a(u_{mx_{i}}) F_{kx_{i}} dx \right) \varphi(t) dt + \int_{D_{T}} u_{m}(x, T) F_{k}(x, T) \varphi(T) dx - \int_{D_{0}} u_{m}(x, 0) F_{k}(x, 0) \varphi(0) dx = \int_{0}^{T} \int_{D_{t}} f F_{k} \varphi(t) dx dt.$$

Перейдем к пределу по $m \to \infty$, воспользовавшись (12)–(16).

$$-\int_{0}^{T} \left(\int_{D_{t}} uF_{k} dx \right) \varphi'(t) dt - \int_{0}^{T} \left(\int_{D_{t}} uF_{kt} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{k$$

для любой $\varphi \in C^1[0,T]$. Пусть $\varphi \in C_0^\infty(0,T)$, тогда в (18) не будет слагаемых с интегралами по D_T и D_0 .

Поэтому, после изменения на множестве нулевой меры, $\Phi_k(t) \stackrel{def}{=} \int_{D_t} u F_k dx$ имеет производную по t из $L_{p'}(0,T)$. Следовательно, можно считать, что $\Phi_k(t)$ непрерывна на [0,T] и имеет след при t=0 и t=T. Здесь мы используем термин cned, а не значение при t=const, поскольку до изменения на множестве нулевой меры величины $\Phi_k(t)$ могут не быть непрерывными и определёнными всюду.

Интегрируя по частям в (18), получим:

$$\int\limits_0^T \!\! \left(\frac{d}{dt} (\int\limits_{D_t} u F_k \, dx) \right) \! \varphi \, dt - \int\limits_0^T \!\! \left(\int\limits_{D_t} u F_{kt} \, dx \right) \! \varphi \, dt + \int\limits_0^T \!\! \left(\int\limits_{D_t} \sum\limits_{i=1}^n \chi_i F_{kx_i} \, dx \right) \! \varphi \, dt \, = \, \int\limits_0^T \int\limits_{D_t} f F_k \varphi \, dx dt.$$

В силу плотности $C_0^\infty(0,T)$ в $L_p(0,T)$ последнее равенство можно замкнуть на

все φ из $L_p(0,T)$. После этого снова возьмем $\varphi \in C^1[0,T]$. Тогда

$$-\int_{0}^{T} \left(\int_{D_{t}} u F_{k} dx \right) \varphi'(t) dt + \Phi_{k}(T) \varphi(T) - \Phi_{k}(0) \varphi(0) - \int_{0}^{T} \left(\int_{D_{t}} u F_{kt} dx \right) \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{kx_{i}} dx \right) \varphi(t) dt = \int_{0}^{T} \int_{D_{t}} f F_{k} \varphi(t) dx dt.$$

Сравнивая это тождество с (18), получаем

$$\Phi_k(T)\varphi(T) - \Phi_k(0)\varphi(0) = \int_{D_T} \zeta(x)F_k(x,T)\varphi(T)dx - \int_{D_0} u_0(x)F_k(x,0)\varphi(0)dx.$$

Учитывая произвольность $\varphi \in C^1[0,T]$, приходим к следующим равенствам для любого k:

$$\left(\int_{D_t} u F_k \, dx \right) \bigg|_{t=T} = \int_{D_T} \zeta(x) F_k(x, T) \, dx, \tag{19}$$

$$\left(\int_{D_t} u F_k \, dx \right) \bigg|_{t=0} = \int_{D_0} u_0(x) F_k(x,0) \, dx. \tag{20}$$

Выберем $F_k = \omega_k(x,t)$. Воспользовавшись непрерывностью $\int\limits_{D_t} u\omega_k\,dx$ из соотношения (20), получаем для любого k при $t \to 0$

$$\int_{D_t} u\omega_k \, dx \to \left(\int_{D_t} u\omega_k \, dx \right) \Big|_{t=0} = \int_{D_0} u_0(x)\omega_k(x,0) \, dx.$$

Выполнение условия (6) обосновано.

7. О производной по t. Обоснование равенства $\chi = A(t)u$

Пусть $F \in W^{1,1}_{p,p'}(Q_T)$. В силу теоремы 3 о плотности можно подобрать $\{F_k\}$ так, чтобы $F_k \to F$ в $L_p(t; \overset{\circ}{W}^1_p(D_t))$ и $F_{kt} \to F_t$ в $L_{p'}(Q_T)$. Тогда, учитывая следствие к теореме 3, при $k \to \infty$ из (18) получаем $\forall \varphi \in C_0^\infty(0,T)$

$$-\int_{0}^{T} \left(\int_{D_{t}} uF \, dx \right) \varphi'(t) \, dt - \int_{0}^{T} \left(\int_{D_{t}} uF_{t} \, dx \right) \varphi(t) \, dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} F_{x_{i}} \, dx \right) \varphi(t) \, dt =$$

$$= \int_{0}^{T} \int_{D_{t}} fF \varphi(t) \, dx dt.$$
(21)

Если u удовлетворяет (21), то в силу приведённого ранее определения производной по t функции u из пространства $L_p(t; W_p^1(D_t))$, получим

$$\int_{0}^{T} \langle u_{t}, F \rangle \varphi(t) dt = \int_{0}^{T} \langle f, F \rangle \varphi(t) dt - \int_{0}^{T} \left(\sum_{i=1}^{n} \int_{D_{t}} \chi_{i} F_{x_{i}} dx \right) \varphi(t) dt.$$

По лемме дю-Буа-Реймонда [15, с. 10] почти всюду на (0,T)

$$\langle u_t, F \rangle = \langle f, F \rangle - \sum_{i=1}^n \int_{D_t} \chi_i F_{x_i} dx = \langle f, F \rangle - \langle \chi, F \rangle.$$

Очевидно, для почти всех t $u_t \in W_{p'}^{-1}(D_t)$. При этом

$$\int_{0}^{T} |\langle u_{t}, F \rangle|^{p} dt \leq c_{10} \int_{0}^{T} ||F||_{\dot{W}_{p}(D_{t})}^{p} dt.$$

Эти два условия будем записывать в виде $u_t \in L_{p'}(t; W_{p'}^{-1}(D_t)).$

Теперь, в силу утверждения теоремы 4 о плотности можно замкнуть тождество (21) на класс функций $F \in H(Q_T)$. Взяв F = u, получим для любой $\varphi \in C_0^\infty(0,T)$

$$-\int_{0}^{T} \left(\int_{D_{t}} u^{2} dx \right) \varphi'(t) dt - \int_{0}^{T} \langle u_{t}, u \rangle \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} u_{x_{i}} dx \right) \varphi(t) dt = \int_{0}^{T} \langle f, u \rangle \varphi(t) dt.$$

С другой стороны, опять используя определение производной по t, как распределения, получим

$$\int_{0}^{T} \langle u_{t}, u \rangle \varphi(t) dt + \int_{0}^{T} \left(\int_{D_{t}} \sum_{i=1}^{n} \chi_{i} u_{x_{i}} dx \right) \varphi(t) dt = \int_{0}^{T} \langle f, u \rangle \varphi(t) dt,$$
 (22)

т.е.
$$2\int_{0}^{T} \langle u_t, u \rangle \varphi(t) dt = -\int_{0}^{T} (\int_{D_t} u^2 dx) \varphi'(t) dt$$
. Поэтому,
$$\langle u_t, u \rangle = \frac{1}{T} \frac{d}{T} \int_{0}^{T} u^2 dx.$$

$$\langle u_t, u \rangle = \frac{1}{2} \frac{d}{dt} \int_{D_t} u^2 \, dx. \tag{23}$$

Из (22) следует, что $\int\limits_{D_t} u^2\,dx$ имеет производную из $L_1(0,T)$. Значит, можно считать, что функция $\int\limits_{D_t} u^2\,dx$ непрерывна и имеет след при t=0. Равенство (23) и факт непрерывности следуют также из леммы 4. Из нее же получаем, что величины $\int\limits_{D_t} (u-F_k)^2\,dx$ и $\int\limits_{D_t} (u-F)^2\,dx$ непрерывны по t и имеют след при t=0. Докажем, что следы сходятся.

Лемма 6. Если $u \in H(Q_T)$ и $F_k \to F$ в $H(Q_T)$, то при $k \to \infty$

$$\left(\int_{D_t} (u - F_k)^2 dx \right) \bigg|_{t=0} \to \left(\int_{D_t} (u - F)^2 dx \right) \bigg|_{t=0}.$$

Доказательство. По построению F_k имеем при $k \to \infty$ для любой $\varphi \in C^1[0,T]$

$$\int_{0}^{T} \langle F_{kt}, u \rangle \varphi(t) dt + \int_{0}^{T} \langle u_{t}, F_{k} \rangle \varphi(t) dt \to \int_{0}^{T} \langle F_{t}, u \rangle \varphi(t) dt + \int_{0}^{T} \langle u_{t}, F \rangle \varphi(t) dt.$$

Используя формулу (3) получим, что $\int\limits_0^T \frac{d}{dt} \langle F_k, u \rangle \varphi(t) \, dt \to \int\limits_0^T \frac{d}{dt} \langle F, u \rangle \varphi(t) \, dt$ при $k \to 0$

$$-\int_{0}^{T} \langle F_{k}, u \rangle \varphi'(t) dt + \langle F_{k}, u \rangle \varphi(t) \Big|_{0}^{T} \to -\int_{0}^{T} \langle F, u \rangle \varphi'(t) dt + \langle F, u \rangle \varphi(t) \Big|_{0}^{T}.$$

Однако первое слагаемое левой части сходится при $k \to \infty$ к первому слагаемому правой части. Поэтому, выбирая $\varphi(0)=1,\, \varphi(T)=0,$ получим, что при $k\to\infty$

$$\langle F_k, u \rangle \Big|_{t=0} = \left(\int_{D_t} F_k u \, dx \right) \Big|_{t=0} \to \left(\int_{D_t} Fu \, dx \right) \Big|_{t=0}.$$
 (24)

Аналогично предыдущему получаем $\int_{0}^{T} \langle F_{kt}, F_{k} \rangle \varphi(t) dt \rightarrow \int_{R}^{T} \langle F_{t}, F \rangle \varphi(t) dt$ при $k \rightarrow 0$

$$-\frac{1}{2}\int_{0}^{T} \left(\int_{D_{t}} F_{k}^{2} dx\right) \varphi'(t) dt + \frac{1}{2} \left(\int_{D_{t}} F_{k}^{2} dx\right) \varphi(t) \bigg|_{0}^{T} \to -\frac{1}{2}\int_{0}^{T} \left(\int_{D_{t}} F^{2} dx\right) \varphi'(t) dt + \frac{1}{2} \left(\int_{D_{t}} F^{2} dx\right) \varphi(t) \bigg|_{0}^{T}.$$

В силу сходимости F_k к F в $L_p(t;L_2(D_t))$ $\left(H(Q_T)\subset L_p(t;W_p^1(D_t))\subset L_p(Q_T)\right)$ $\subset L_p(t;L_2(D_t))$ получаем при $k \to \infty$

$$\left(\int_{D_t} F_k^2 dx \right) \Big|_{t=0} \to \left(\int_{D_t} F^2 dx \right) \Big|_{t=0}. \tag{25}$$

Из (24) и (25) выводим то, что и требовалось доказать:

$$\begin{split} &\left(\int\limits_{D_t} (u-F_k)^2\,dx\right)\bigg|_{t=0} = \left(\int\limits_{D_t} u^2\,dx\right)\bigg|_{t=0} - 2\bigg(\int\limits_{D_t} uF_k\,dx\bigg)\bigg|_{t=0} + \bigg(\int\limits_{D_t} F_k^2\,dx\bigg)\bigg|_{t=0} \to \\ & \to \left(\int\limits_{D_t} u^2\,dx\right)\bigg|_{t=0} - 2\bigg(\int\limits_{D_t} uF\,dx\bigg)\bigg|_{t=0} + \bigg(\int\limits_{D_t} F^2\,dx\bigg)\bigg|_{t=0} = \bigg(\int\limits_{D_t} (u-F)^2\,dx\bigg)\bigg|_{t=0}. \end{split}$$

Лемма 7. Возъмем $F_k = \sum_{j,i=1}^k c_i(t)\omega_j(x,t), \ c_i(t) \in W^1_{p'}(0,T).$ Тогда для предельной функции u(x,t) выполнено неравенство

$$\int_{D_0} (u_0(x) - F_k(x, 0))^2 dx \le \left(\int_{D_t} (u(x, t) - F_k(x, t))^2 dx \right) \Big|_{t=0}.$$
 (26)

Доказательство. Прежде докажем неравенство

$$\int_{D_0} u_0^2(x) dx \le \left(\int_{D_t} u^2(x,t) dx \right) \bigg|_{t=0}.$$

Для этого сначала выберем такие F_k , что $F_k(x,0) \to u_0(x)$ в $L_2(D_0)$. Например, можно взять $F_k=u_k$. Из (20) получаем

$$\int_{D_0} u_0(x) F_k(x,0) dx = \left(\int_{D_t} u F_k dx \right) \Big|_{t=0} \le \left(\left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \right) \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} = \left(\int_{D_t} u^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F_k^2(x,t) dx \right)^{\frac{1}{2}} \Big|_{t=0} \left(\int_{D_t} F$$

В полученном неравенстве переходим к пределу при $k \to \infty$:

$$\int_{D_0} u_0^2(x) \, dx \le \left(\int_{D_t} u^2(x,t) \, dx \right)^{\frac{1}{2}} \bigg|_{t=0} \left(\int_{D_0} u_0^2(x) \, dx \right)^{\frac{1}{2}}$$

или

$$\int_{D_0} u_0^2(x) dx \le \left(\int_{D_t} u^2(x,t) dx \right) \bigg|_{t=0}.$$

Теперь вернемся к произвольным F_k . Используя последнее неравенство и (20), получим $\int\limits_{D_0} (u_0(x) - F_k(x,0))^2 dx \le \left(\int\limits_{D_t} (u(x,t) - F_k(x,t))^2 dx \right) \Big|_{t=0}$. Лемма доказана.

Докажем, что $\chi=A(t)u$. Пусть далее $F_k(x,t)=\sum\limits_{i,j=1}^k \alpha_{ij}b_i(t)\omega_j(x,t),\,k\leq m.$ Тогда

$$\int_{0}^{T} \langle u_{mt} - F_{kt}, u_{m} - F_{k} \rangle dt = \frac{1}{2} \int_{0}^{T} \frac{d}{dt} \left(\int_{D_{t}} (u_{m} - F_{k})^{2} dx \right) dt =$$

$$= \frac{1}{2} \left(\int_{D_{t}} (u_{m} - F_{k})^{2} dx \right) \Big|_{t=T} - \frac{1}{2} \int_{D_{0}} (u_{m}(x, 0) - F_{k}(x, 0))^{2} dx \ge$$

$$\geq -\frac{1}{2} \int_{D_{0}} (u_{m}(x, 0) - F_{k}(x, 0))^{2} dx.$$

Складывая это неравенство с неравенством монотонности

$$\int_{0}^{T} \langle A(t)u_m - A(t)F_k, u_m - F_k \rangle dt \ge 0, \qquad u_m, F_k \in L_p(t; \overset{\circ}{W}_p^1(D_t)),$$

выводим

$$\int_{0}^{T} \langle u_{mt}, u_{m} - F_{k} \rangle dt - \int_{0}^{T} \langle F_{kt}, u_{m} - F_{k} \rangle dt + \int_{0}^{T} \langle A(t)u_{m}, u_{m} - F_{k} \rangle dt - \int_{0}^{T} \langle A(t)F_{k}, u_{m} - F_{k} \rangle dt \ge -\frac{1}{2} \int_{D_{0}} (u_{m}(x, 0) - F_{k}(x, 0))^{2} dx.$$

Так как $k \leq m$, из (7) нетрудно получить тождество

$$\langle u_{mt}, u_m - F_k \rangle = \langle f, u_m - F_k \rangle - \langle A(t)u_m, u_m - F_k \rangle.$$

Интегрируя его по t и подставляя в предыдущее неравенство, получим

$$\int_{0}^{T} \langle f, u_m - F_k \rangle dt - \int_{0}^{T} \langle F_{kt}, u_m - F_k \rangle dt - \int_{0}^{T} \langle A(t) F_k, u_m - F_k \rangle dt \ge$$

$$\ge -\frac{1}{2} \int_{D_0} (u_m(x, 0) - F_k(x, 0))^2 dx.$$

Перейдем к пределу при $m \to \infty$:

$$\int_{0}^{T} \langle f, u - F_k \rangle dt - \int_{0}^{T} \langle F_{kt}, u - F_k \rangle dt - \int_{0}^{T} \langle A(t)F_k, u - F_k \rangle dt \ge -\frac{1}{2} \int_{D_0} (u_0(x) - F_k(x, 0))^2 dx.$$

Воспользуемся полученным равенством $\langle u_t, F \rangle = \langle f, F \rangle - \langle \chi, F \rangle$ при $F = u - F_k$. Тогда $\int\limits_0^T \langle f, u - F_k \rangle dt = \int\limits_0^T \langle u_t, u - F_k \rangle dt + \int\limits_0^T \langle \chi, u - F_k \rangle dt$ и предыдущее неравенство примет вид

$$\int_{0}^{T} \langle u_{t}, u - F_{k} \rangle dt + \int_{0}^{T} \langle \chi, u - F_{k} \rangle dt - \int_{0}^{T} \langle F_{kt}, u - F_{k} \rangle dt - \int_{0}^{T} \langle A(t)F_{k}, u - F_{k} \rangle dt \ge$$

$$\ge -\frac{1}{2} \int_{D_{0}} (u_{0}(x) - F_{k}(x, 0))^{2} dx$$

или, с учетом неравенства (26) леммы 7,

$$\int_{0}^{T} \langle u_{t} - F_{kt}, u - F_{k} \rangle dt + \int_{0}^{T} \langle \chi - A(t)F_{k}, u - F_{k} \rangle dt \ge$$

$$\ge -\frac{1}{2} \int_{D_{0}} (u_{0}(x) - F_{k}(x, 0))^{2} dx \ge -\frac{1}{2} \left(\int_{D_{t}} (u(x, t) - F_{k}(x, t))^{2} dx \right) \Big|_{t=0}.$$
(27)

В силу плотности F_k в $H(Q_T)$ (теоремы 3 и 4), последнее неравенство можно замкнуть на все $F \in H(Q_T)$. Например, сходимость $\int\limits_0^T \langle F_{kt}, F_k \rangle dt \to \int\limits_0^T \langle F_t, F \rangle dt$ при $k \to \infty$ устанавливается так же, как в лемме 6. В ней же обосновано замыкание правой части неравенства (27).

Итак, замыкая (27), получим

$$\int_{0}^{T} \langle u_t - F_t, u - F \rangle dt + \int_{0}^{T} \langle \chi - A(t)F, u - F \rangle dt \ge -\frac{1}{2} \left(\int_{D_t} (u - F)^2 dx \right) \Big|_{t=0}.$$

Выберем $F=u-\lambda w$, где $\lambda=const$, а $w\in H(Q_T)$ – произвольно. Тогда

$$\int_{0}^{T} \langle \lambda w_{t}, \lambda w \rangle dt + \int_{0}^{T} \langle \chi - A(t)(u - \lambda w), \lambda w \rangle dt \ge -\frac{1}{2} \left(\int_{D_{t}} \lambda^{2} w^{2} dx \right) \Big|_{t=0}.$$

Разделим обе части этого неравенства на $\lambda>0$ и устремим $\lambda\to+0$. В силу семинепрерывности A(t) получаем $\int\limits_0^T \langle \chi-A(t)u,w\rangle dt\geq 0$. Отсюда стандартным образом выводим $\int\limits_0^T \langle \chi-A(t)u,w\rangle dt=0$ для любого $w\in H(Q_T)$. Взяв $w=b(t)\,w_j$ с произвольной b(t) из $C^1[0,T]$, получаем $\langle \chi-A(t)u,w_j\rangle=0$ почти всюду на [0,T]. Следовательно, $\chi-A(t)u=0$.

ЛИТЕРАТУРА

- [1] M. Gevrey, "Les equations paraboliques", J. de Math., 9. (1913), 187–235.
- [2] I. G. Petrowsky, "Zur ersten Randwertaufgabe der Warmeleitungsgleichung", Compositio math, 1 (1935), 389–419.
- [3] В. П. Михайлов, "О задаче Дирихле и первой смешанной задаче для параболического уравнения", Докл. АН СССР, **140**:2 (1961), 303–306.
- [4] В. П. Михайлов, "О задаче Дирихле для параболического уравнения", *Mam. сборник*, **61(103)**:1 (1963), 40–64.
- [5] С. Г. Крейн, Г. И. Лаптев, "Абстрактная схема рассмотрения параболических задач в нецилиндрических областях", Дифференциальные уравнения, **5**:8 (1969), 1458–1469.
- [6] R. Benabidallah, J. Ferreira, "On hyperbolic parabolic equations with nonlinearity of Kirchhoff Carrier type in domains with moving boundary", Nonlinear Analysis, 37 (1999), 269–287.
- [7] J. Ferreira, N. A. Lar'kin, "Global solvability of a mixed problem for a nonlinear hyperbolic parabolic equation in noncylindrical domains", *Portugaliae Mathematica*, **53**:4 (1996), 381–395.
- [8] П.В. Виноградова, А.Г. Зарубин, "О методе Галеркина для квазилинейных параболических уравнений в нецилиндрической области", Дальневосточный мат. эсурнал., **3**:1 (2002), 3–17.
- [9] Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М, 1972, 588 с.

- [10] С. Н. Глазатов, "Некоторые задачи для дважды нелинейных параболических уравнений в нецилиндрических областях", Диф. и интегр. уравнения мат. модели, Тезисы докладов межд. науч. конференции, Челябинский гос. ун-т, Челябинск, 2002, 31.
- [11] Н. Е. Истомина, А. Г. Подгаев, "О разрешимости задачи для квазилинейного вырождающегося параболического уравнения в области с нецилиндрической границей", Дальневосточный математический журнал, 1:1 (2000), 63-73.
- [12] Е. Г. Агапова, Исследование разрешимости задач для нестационарных вырождающихся на решении нелинейных уравнений, Дис. . . . канд. ф.-м. наук: 01.01.02., ХГТУ, Хабаровск, 2000.
- [13] Х. Гаевский, К. Грёгер, К. Захариас, Нелинейные операторные уравнения и операторно-дифференциальные уравнения, Мир, М., 1978, 336 с.
- [14] Ю. А. Дубинский, "Квазилинейные эллиптические и параболические уравнения любого порядка", Успехи математических наук, **XXIII**:1(139) (1968), 45–90.
- [15] Г. В. Демиденко, Введение в теорию соболевских пространств, Учебное пособие, Новосиб. ун-т., Новосибирск, 1995, 111 с.
- [16] Н. Е. Истомина, Развитие метода монотонности на случай параболического уравнения в нецилиндрической области, Препринт № 6 ИПМ ДВО РАН, Дальнаука, Владивосток, 2001, 40 с.
- [17] Н. Е. Истомина, А. Г. Подгаев, "Теорема единственности для нелинейного параболического уравнения в нецилиндрической области", Мат. заметки ЯГУ, 10:1 (2003), 27-33.
- [18] А. Г. Подгаев, А. З. Син, "Об одном обобщении леммы Вишика Дубинского и неравенства Гронуолла", Электронное научное издание "Учёные заметки ТОГУ", 4:4 (2013), 2113-2118.
- [19] О. А. Ладыженская, Краевые задачи математической физики, Наука, М, 1973, 408 с.
- [20] А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, Наука, M, 1968, 496 с.

Представлено в Дальневосточный математический журнал 14 октября 2013 г.

> Podgaev A. G., Istomina N. E. On Faedo-Galerkin methods and monotony in a non-cylindrical domain for a degenerate quasi-linear equation, Far Eastern Mathematical Journal, 2014, V. 14, No. 1, P. 73–89.

ABSTRACT

In this article a monotony method for nonstationary equations adapt to noncylindrical domains. Existence theorems are proved. A family of basic functions constructed. These functions have a smooth parameter and a completeness property for every one.

Key words: non-cylindrical domain, monotony method, family of basic functions, quasi-linear equation.