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Inhomogeneous Diophantine approximation
on curves with non-monotonic error function

In this paper we prove a convergent part of inhomogeneous Groshev type
theorem for non—-degenerate curves in Euclidean space where an error
function is not necessarily monotonic. Our result naturally incorporates and
generalizes the homogeneous measure theorem for non-degenerate curves.
In particular, the method of Inhomogeneous Transference Principle and
Sprindzuk’s method of essential and inessential domains are used in the
proof.
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Introduction and Statements

In 1998 Kleinbock and Margulis [10] established the Baker—Sprindzuk conjecture
concerning homogeneous Diophantine approximation on manifolds. An inhomogeneous
version was then proved by Beresnevich and Velani [6]. The theory of inhomogeneous
Diophantine approximation on manifolds was started with the result of V. I. Bernik,
D. Dickinson and M. Dodson [7]. The significantly stronger Groshev type theory for
dual Diophantine approximation on manifolds is established in [3], [4], and [8] for the
homogeneous case and in [2] for the inhomogeneous case. In all of these results the
error function ¥ was assumed to be monotonic. In 2005 Beresnevich [5] showed that
the condition that ¥ is monotonic could be removed for the Veronese curve V, =
= {(z,2% ...,2") : © € R}; he conjectured that the result should also hold for any
non—degenerate curve in Euclidean space. This was proved in [9].

Our main result below is a convergent part of Groshev type theorem for inhomoge-
neous Diophantine approximation on non—degenerate curves in Euclidean space without
monotonicity condition. First some notation is needed. Let F,, be the set of functions

anfn(x) + ... +a1f1(x) + ap,

with n > 2, a = (ag,...,a,) € Z"™\ {0}, and fi, fo,..., fn be C™ functions from
R — R with non—vanishing Wronskian wr(fj,..., f,)(z) almost everywhere. For F' €
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F,, define the height of F' as H = H(F') = maxo<j<y |aj|. The Lebesgue measure of a
measurable set A C R is denoted by u(A).

Define a real valued function ¥ : R™ — R* and a function # : R — R. Denote by
L, (V) the set of z € R such that the inequality

|F () +0(z)] < W(H(F)) (1)

has infinitely many solutions F' € F,,.
The main result of this paper is the following statement.

Theorem 1. Let n > 2 and  : R — R be a function such that 8 € C™. Let
U Rt — RT be an arbitrary function (not necessarily monotonic) such that the sum
Sope WY (h) converges. Then

p(Lnp(¥)) = 0.

Throughout, the Vinogradov symbol < is used so that if K and M are positive real
numbers then K < M means that there exists C' > 0 such that K < CM. If K < M
and M < K we write K < M.

1. Proof of Theorem 1

First note that since > ;7 h" 1W(h) converges, h"'W(h) tends to 0 as h — oc.
Therefore,

W(h) = o(h™H). (2)

Theset S ={x € R:wr(f],..., f,)(x) =0} is closed and of zero measure. Thus R\ S is

open and therefore an F,, set. We can write R\ .S = U2, [ay, bg]. It is therefore sufficient

to prove the theorem for a closed interval I. Also, since |wr(f1,..., f!)(x)| # 0 almost
everywhere we will assume from now on, without loss of generality that

wr(fi,. - fo)@)] 2 e =e(l) >0 (3)

for all z in such an interval I. Since the functions f = (fi,..., f,) and @ are C™ then
we can assume that there exists a constant Ky = Ko(I, £, 6) such that
(4) < (4) <
JBAX SUp £ (2)] < Ko and Jax sup |6 ()| < Ko. (4)
Let v > 0 be a fixed real number. As v — 0 the measure of the set of x € [ for

which the inequality |fs(z)|] < 7 holds for at least for one s, 1 < s < n, also tends to
zero. Hence, from now on it is assumed that

fi(z)] >y, 1<i<n. (5)

In what follows define the function t;; as t;;(z) = fi(z)f; ' (z). It is shown in Lemma 3
of [1] that if wr(ff, ..., f,)(x) # 0 almost everywhere then ¢;;(z) # 0 almost everywhere
for all 4,5 € {1,...,n}. The next lemma relates the size of |wr(f],..., f!)(z)| to the

size of | fi(x) fj(x) — fi() f; ()],
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Lemma 1. [9] If [wr(f{,..., [)(x)] = € then |fi(z)fj(z) — fi(z)f;(x)| > %
for alli, jin {1,...,n}.

From now on, it is therefore assumed without loss of generality that

2

(@) fi(@) = @) ()] > 6 = == (6)

- 2ntinl Kl
for all i,7 € {1,...,n} with ¢ # j.

Lemma 2. [9] Let I C R be an interval for which |wr(f,..., f/)(x)] > €. Let
By C R be a set with u(By) = 0 and let By = {x € I : t;;(x) € By}, then By also has

ZETO0 easure.

For the proof of main result we will need some properties of the functions F' € F,.
The following lemma is a modification and combination of Lemmas 2 and 3 of Pyartli,
[11]. We are assuming that (3) holds.

Lemma 3. Let F' € F,,. For any interval Iy C I with length |I| < 1 =1(s(1), Ko)
there exists 1, 1 <1 <n, such that

[FO(2)] > c(D)H(F) (7)
for all x € I. The number of zeros of F' € F,, in Iy does not exceed n.

Using Lemma 3 and (4), we obtain that for F' € F,, and any interval I; C I with
length || <1 =1(e(]), Ky) there exists i, 1 < i < n, such that

[FO(x) + 09 ()| > co()H(F) (8)

for all z € I; and sufficiently large H(F'). Rolle’s theorem and (8) imply that the number
of sub-intervals in any interval I; with |I;| < I(e(), Ky) where F' + 6 is monotonic is
at most n, where F' € F,, and H(F) is sufficiently large.

Every interval I can be written as a finite union of intervals I, with || < [.
Therefore, it is sufficient to prove the theorem for each of these smaller intervals. From
now on, we restrict ourselves to such an interval, relabelled I, which without loss of
generality satisifies (8).

The proof is now split into two parts and the following two sets are considered. Fix
a real number v satisfying

0<wv<1/4. 9)

Define,
Li(n,0)={zcl:|F(x)+0(x)| < HF)" ", |F(2)+0(x)| < HF)™" im. F € F,}
and

Lo(n,0,0)={xel: |F(x)+0(z)| < U(H(F)), |F'(z)+0(z)] > H(F)™" im. F € F,}
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where i.m. should read for infinitely many. Clearly, from (2),
L,o(V) C Li(n,0)U Ly(n,0,T).

It will be shown that each of the sets £(n,0) and Ly(n,0, V) has Lebesgue measure
zero. Thus, to prove the theorem two different cases concerning the size of |F'(z)+6'(x)]
are considered. If x € £, 9(V) then = must satisfy at least one of these cases infinitely
often. To prove that each set of x satisfying one of the conditions infinitely often has
measure zero, repeated use will be made of the Borel-Cantelli Lemma below.

Lemma 4 (Borel-Cantelli). Let A; be a family of Lebesgue measurable sets and let

A be the set of points x € R which lie in infinitely many A;. If > pu(A;) < oo then
f1(As) = 0.

J=1

1.1. The case of small derivative

Proposition 1. Let n > 2. Then, p(L1(n,0)) = 0.

Jlokasamenvcmso. First L£1(n,0) is written as a lim sup set. For F' € F,, define
B(F)={zel: |F(z)+0(z)| < H(F)™™" |F'(x)+6(x)| < H(F)™"}.

Then

Lin,0)= U U B,

=1t=N FeF}

where

Fl={FeF, 2" <H(F)<2"*}.

To prove the proposition it will be shown that a larger set (containing £;(n,#)) has
measure zero and then the Inhomogeneous Transference Principle proved in [6] will
be used. The Inhomogeneous Transference Principle allows the transfer of zero measure
statements for homogeneous lim sup sets to inhomogeneous lim sup sets and is described
below.

Inhomogeneous Transference Principle. Most of this section is adapted from
[6, Case BJ. For our purposes the two countable indexing sets T and A from [6] are the
sets T = NU {0} and A = F,,. Throughout, J denotes a finite open interval in R with
closure denoted by J. Let # and Z be two maps from (NU{0}) x F,, x R* into the set
of open subsets of R such that

H(t, Fe) =TF,¢e), I(t,Fe)=TITi(F,e).

For the specific case considered in this article the sets Z{(F, €) and Z}(F, €) are defined
as follows:

v el |F(x)+0(x) <280 e, |F'(x) + 0 ()| <27} if FeF,
I;(F,e):{(}[) |F(x) + 6(2)] [F'(z) + 6'(2)| ¥ i
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and

. t(—n+1) / —tv : t+1 s
T, €) = { ém el: |F(z) <2 e, |F'(x)] <27 ™e} ;ﬁseF € U Fi

Let 6 € R and define the function ¢s(t) = 2. Also, define ® = {¢5: 0 <6 < v/2}.
For any ¢ € ® define

Iy(¢) = Urer, Iy(F. 6(t)) = Urer, Iy(F, ¢(1))
and denote by Az(¢) the limsup set

(10)

In order to use the inhomogeneous transference principle from [6] we also define the
homogeneous limsup set

M(0) = () U Zo(e)

where
Ii(¢) = Urer, Io(F, (1)) = Uity Urers To(F, 6(t)).
Clearly, for any 0 < § < v/2 the inclusion

El(n, 9) C AI<¢5)

holds. The use of the transference principle depends on the two following properties
being satisfied.

Intersection Property: Let ® denote a set of functions ¢ : NU {0} — R*. The
triple (H,Z, ®) is said to satisfy the intersection property if for any ¢ € ® there exists
¢* € ® such that for all but finitely many ¢ € NU {0} and all distinct F, F € F,

TY(F,6(0) N T, 6(0) © Ty(o"). (1)
Contracting Property: Let {k;},cn be a sequence of positive numbers such that
> k<o (12)

teNU{0}

The measure p is said to be contracting with respect to (Z,®) if for any ¢ € & there
exists o7 € ® such that for all but finitely many ¢ and all F' € F, there exists a
collection C} p of balls B centred in J satisfying the following three conditions:

InZyFet)c |J B (13)
BeCyr

I U BcZiFré 1), (14)

p(5BNIT(F, ¢(t))) < ku(5B). (15)

We now state the theorem from [6].
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Theorem 2 (Inhomogeneous Transference Principle). Suppose that (H,Z,®) satis-
fies the intersection property and that j is contracting with respect to (Z,®). If, for all
¢ €D, w(Ay(p)) =0 then for all p € @, u(Az(¢)) = 0.

First the contracting and intersection properties are verified and then it will be
shown that (A (¢s)) = 0. This will imply using the transference principle that Az(¢s)
has measure zero and further that u(L1(n,d)) = 0 as required.

1.1.1. Verifying the intersection property
Let t e NU {0} and F, F € F, with F # F. Suppose that

© € TY(F, 05(1)) N TY(F, 5(1))-

Then, the inequalities

|[F(z) +0(x)] < ¢5(t)2"") and |F(x) +6(x)| < ¢5()2" Y,

|F'(x) +0'(x)| < ¢s5(t)27"" and |F’(:1:) + 0 (2)] < ¢s(t)27""

hold. )
Let R(x) = (F(z) +0(x)) — (F(x) + 6(z)). Then,

[R(x)] < 205(1)2"" < g (1)27077 Y,
[R(z)] < 27"¢s(t) < 270w (1),

for all ¢ > /2 5 and where ¢s € ®. Clearly R cannot be constant for n > 2 and ¢ > 2,
so R € UTiFs. Thus, v € TE(R, ¢s(t)) and (11) is satisfied with ¢* = @g.

1.1.2. Verifying the contracting property
The following definition from [10] will be used.

Definition 1. Let C' and « be positive numbers and f : I — R be a function defined
on the open interval I C R. Then f is called (C,a)—good on I if, for any open interval
B C I and any € > 0,

p{z e B |f(z)] < €sup [f(2)]}) < Ce"u(B).

Several useful facts about (C, a)-good functions are listed below.

Lemma 5. [8, Lemma 3.1] Let I C R and C, o > 0 be given.

(i) If f is (C,«)-good on I then so is Af for any X € R.

(ii) If fi, i € Iy, are (C,a)-good on I then so is sup;c;, | fil.

(111) If f is (C, a)-good on I and ¢; < % < ¢y forallz € I, then g is (C(ca/c1)®, a)-
good on I.

() If f is (C,«a)-good on I then f is (C',a’)-good on I' for every C' > C, o < «
and I' C I.
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Lemma 6. [2, Corollary 3] Let U be an open subset of R™, xg € U and let f =
(fi,-. . fn) : U — R"™ be n-nondegenerate at xo for somen > 2. Let § € C™(U). Then
there exists a neighborhood V- C U of x¢ and a positive constants C' and Hy such that
for any a € R™ satisfying |a] > H

(a) ag+a-f+0 is (C, %)-good on V for every ag € R, and

(b) |V(a-f+0)| is (C, —~—=)-good on V.

> m(n—1)

Here V denotes the gradient operator. Note that in the case m = 1 the map f is
nondegenerate iff wr(fi,..., f))(x) # 0 almost everywhere.

Lemma 7. [2, Corollary 4] Let U,xq,f and 0 be as in Lemma 6. Then for every

sufficiently small neighborhood V-C U of xq, there exists Hy > 1 such that
inf  suplap+a-f(x)+0(x)| > 0.
(a,a0)€R™! xeV/
la|>Ho

Let J be a sufficiently small open interval such that 5J C I. By Lemma 5 and
Lemma 6, there exist positive numbers C' and Hj such that for any t € T and F' € A
satisfying H(F) > Hy both F 4 6 and F' + 6’ are (C, +)-good on 5.J. Similarly, for any
t € NU{0} and F € F}, using the properies of (C, £)-good functions from Lemma 5,
we have that the function F, p : I — R given by

Fye() o= max {2002 F(2) 1 0(0)], | F' (1) + 6/(2)]}
is also (C, £)-good on 5.J. By definition, for F € F,

{$ el: Ft,F($) < ¢5(t)27vt} if e ]:,,tl

7yF,0s(0) = { § i (16)
Next, given ¢5 € @ let
By = PL(5+3):
Clearly, ¢f € ® and ¢5(t) < ¢f (¢) for all t € NU{0}; therefore,
Iy(F, ¢5(t)) C Zg(F, 65 (1)) (17)

The collection Cy p will consist of intervals B(z), each centred at a point = € J,
which satisfy conditions (12)—(15) for an appropriate sequence k;; they are constructed
in the following way. Let F' € F,. If Z}(F, ¢5(t)) = ) then C; r = (). Now assume that
T, (F, ¢s(t)) # (. By the definition of ® and (9), it follows that

THF,¢f (1) C {z €T |F(z)+0(z)] < 2715},

Since F + 6 is (C, +)-good on 5. for all sufficiently large H(F) then by definition of
(C, a)-good function and Lemma 7 we have

WG (F, o () N ) < p{w € J ¢ |[F2) +6(x)] < 27109} < 27050 ()

for sufficiently large ¢t. Hence,
J ¢ Iy(F, ¢5 (1)) (18)
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for sufficiently large t and n > 2.
By (17) and the fact that Z}(F, ¢f (t)) is open, for every x € J NZE(F, ¢s(t)) there
is an open interval B’(x) containing x such that

B'(x) C Zy(F, 65 (1))

Hence, by (18), and the fact that J is bounded, there exists a scaling factor 7 > 1 such
that the open interval B(x) := 7B’(x) satisfies

JNB(x) C Iy(F ¢4 (1)),
JN5B(x) ¢ Iy(F, ¢4 (), (19)
5B(z) C 5.

Let
Ct,F = {B(ilj’) LT e jﬂIg(F, ¢5(t))}

By (19) and the construction, (13) and (14) are automatically satisfied. Consider any
interval B € Cy p. By (16) and (19)

sup Fy p(z) > sup Fip(z) > gb;(t)Q_”t. (20)
€58 z€JN5B

On the other hand, by (16)

sup  Fop(z) < gs(t)27 (21)
z€T}(F,p5(t))N5B

Let 6* = (v — 2d) > 0. Then, using (20), (21) and the definitions of ¢; and ¢}, we
obtain

sup F,p(x) < 90"t sup Fy p(z).
z€T}(F,p5(t))N5B z€5B

Since F' € F}, then we have that H(F') > Hy for all t € T with t sufficiently large.

Since F, p is a (C, 1)-good on 5J for sufficiently large t it follows from (19) and (21),
that

W(ZH(F, ¢s(t))N5B) < p({z €5B: Fyp(x) <270 s;% F;r(x)}) )
< 2-%'Cu(5B)

for sufficiently large ¢t. This verifies (15) with k; := 9=t and it is easily seen that the
convergence condition (12) is fulfilled.

1.1.3. Establishing u(Ay(¢s)) =0 for § € [0,v/2)

For this Theorem 1.4 of [8] is used. In the notation of that paper take d =1, U = R
and Ty = ... =T, =T, to obtain the next result.
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Theorem 3. [8] Let xp € I and £ : I — R"™ be n-nondegenerate at xo. There exists
an interval J C I containing xo such that for any interval B C J there exists a constant
E > 0 such that for any choice of real numbers w, K, T satisfying the inequalities

O<w<1,T>1 K>0, KTV <1

the set
|F(2)] < w,
S(w,K,T) = x € B: there exists F' € F,, such that |F'(z)| < K,
O0<H(F)<T

has measure at most Ee%%u(B), where
1
€ := max (w, (wKT”’l) "“) .
Fix § € [0,v/2). It then follows from (10) that

Ti(s) = ULl Upers TH(P, ¢s(t)) = S(w, K, T)

with w = ¢s(t)21"H) | K = ¢5(¢)27" and T = 22, By (9), we have € < o=, Thus,
Theorem 3 implies that
(Ty(9s) < 277,

where [ := % is a positive constant. This finally gives that

> u@6n) < 327 < oo
teN =0
Therefore, by the Borel-Cantelli lemma p(Ay(¢s)) = 0 for all § € [0,3). By the
inhomogeneous transference principle this further implies that p(Az(¢s)) = 0 as required.
The proposition has now been proved. [

1.2. The case of big derivative
Proposition 2. Let n > 2. Then, p(La(n,0,¥)) = 0.

Joxasameavcmeso. Let F,(H) = {F € F, : H(F) = H}, then F,, = U¥_,F.(H).
Now consider F' € F,(H) satisfying H™" < |F'(z) + #'(x)|. For the remaining case
we need the following. The set of solutions of (1) in I consists of at most n intervals.
Each of these intervals can be further divided into subintervals on which F’ + 6’ is
also monotonic (at most n — 1 of them). Each of these new intervals is finally further
subdivided into intervals with respect to the value of F'(x) + #'(x). Any interval on
which [F'(z) 4+ 0'(x)| < H™" has already been considered. For F' € F,(H), let I;(F,0)
be one of the remaining intervals; thus, on I;(F,6), F'+ 6 and F’ + #' are monotonic
and |F(z) +6(x)| < V(H(F)), H " < |F'(x) + ¢ (z)| for all x € [;(F,0). The number
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of I;(F,0) is clearly finite. Let [;(F,0) denote the closure of I;(F, ) and a; r denote a

point in [;(F, #) such that

[F'(ap) +0'(yp)| = min [F'(z) +6'(2)]
[L’EIJ(F)

For convenience we will use Fy to denote the function F'(z) + 6(x).

Lemma 8. [11] Let aj,as > 0. Let ¢ be an n-times continuously differentiable
function on (by,bs) satisfying [ (z)| > ay for all x € (by,by). Then

pl{z € (br,by) : U (2) < az}) < e(n)(az/ar) /™.

From Lemma 8 we have
u(I;(F,0)) < c(n)®(H)|Fy(ajr)| " (23)

It follows from the choice of o p that H™" < |Fy(a;r)l.
Now we are ready to complete the proof of Theorem 1. The three remaining cases
in the proof concern different ranges for the size of Fj(o; r).
CaseI. For F € F,(H),let o(Fp) be the union of intervals I;(F, ) for which |Fj(a;)| >
ciH'Y2. Hence, o(Fy) is the set of € I which satisfy |Fp(x)| < U(H) and x lies in some
interval [;(F, @) for which
|[Fy(ajp)] > e H'2. (24)
For every F' € F,(H) and every j, where a; p € o(Fp), and some constant ¢y = co(n)
define the set oy ;(Fp) of points x € I which satisfy
| — ajr| < co Fy(oyr)| ™!
for o p € o(Fy). Let 01(Fp) = Ujor;(Fp). From (23), for H > Hy(cz), the inequality
o(Fy) C 01(Fy) holds and

w(o(Fy)) < e(n)eg W (H)u(or(Fy). (25)
For each j with o p € o(Fy) develop F' as a Taylor series on oy j(Fp) so that
Fy(z) = Fy(ajr) + Fylagr)(z — ajr) + Fy (&) (@ — a;r)?/2,
where §; is between x and «a; . Estimate each term in the above equation to obtain
[Fo(ajr)] < W(H) <cs

|Fy(oyr)(z —ajp)| < o
|y (cr)(z — ojp)®| < 2nKoH(col Fy(ajr)|™")? = 2nKoce; .

It is possible to choose ¢; = cy(7) < min{1/6,7/10} such that 2nKycpc;? < 1. Thus,
|Fy(x)| < 3cg for H > Ho(cz).

Fix the vector by = (an, an_1,. .., axr1, H,ax_1,. .., a141,0-1, ..., a1, 0q), where a =
H, k # [, and let the subclass of F,,(H) of functions with the same vector by be denoted
by Fnp,(H). The number of different F, p, (H) is < H* . Let F, F € Fp1,(H), and
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assume that they have different coefficients a;. Also, assume that oy ;(Fy) 0171(F9) £,
for F, F € Fop,(H). Let [ > 1 and

R(z) = Fy(x) — Fy(x) = ai(F) filx) — al(F) fi(x) = afi(x),
where |a] f;(z)| > . Here, a;(F') denotes the [th coordinate of F. Then,
v < [R(z)] < 6cz < 37/5
which is a contradiction for c; < 7/10. Similar argument in the case [ = 0 gives a
contradiction for ¢; < 1/6. Hence, oy ;(Fp) (o1:(Fp) =0and > plo(Fp)) < |I].

Fe}—n,bo(H)
Together with (25) this gives

Y. ulo(Fy) < [V (H).

FEfn,bO (H)
Summing this over all vectors by gives
S5 Y welE) <Y H ] <o
H=1 by FEF, p,(H) H=1

The Borel-Cantelli lemma can now be used to complete the proof.

Case II. This time, for F' € F,(H) use o(Fy) to denote the union of intervals I;(F, §)
for which 1 < |F'(ajr)| < et H'Y?. Hence o(Fp) is the set of z € I which satisfy

|[Fo ()] < U(H),
and z lies in some [;(F,6) for which
1< |Fy(a,r)| < et HY2. (26)
Now define expansion of I;(F,#) as follows:
09(Fp) = {x € I : dist(z,I;(F,0)) < csH '|F'(ajp)| 7'}, ¢3> c(n).

Let 09(Fp) = U,oq;(Fp). It is readily verified that

o (Fy)) < et e(n) HV(H)pu(oo(Fp)). (27)

Fix the vector
by = (an, -1,y Qpp1, HyQp—1y ooy Q1 Q1 ooy Q1 Gty - - -5 A1, Gg),

where a;, = H with [, m # k and | > m. Denote the subclass of F,,(H) of functions with
the same vector by by F,,p,(H). The number of different sets F,, 1, (H) is < H" 2

The intervals o, ;(Fy) will be divided into two classes of essential and inessential
intervals according to Sprindzuk’s method, see [12] for more details. The interval o ;(Fp)
will be essential if

(02,5 (Fp) N o2 (Fp)) < pu(o2;(Fp))/2
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for all F' € Fp,(H) other than F € F, 1, (H). Otherwise it is called inessential.
First, the essential intervals are investigated. Summing the measure of essential

intervals gives
> > o (Fy) < 1.

FEFn,bl (H) J
02,;(Fp) essential

From this, (27) and the fact that the number of vectors by is < H" 2, we have

S ulo(E) < B )]

b1 Fe}-n,bl (H)

Finally, we obtain

Y Y uelh) <o

H=1 by FEF,p,(H)

Thus, by the Borel-Cantelli Lemma, the set of points x which belong to infinitely many
essential domains is of measure zero.

Now we consider the inessential intervals. Then, by definition, there is a F e
Fup, (H) different from F € F,,p,(H) such that

1(02,5(Fp) Noa(Fy)) > p(o2;(F)) /2.

Let & € 0y,(Fy) N 09:(Fy). Develop every function F € F,p,(H) for every j, where
a;r € 0(Fy), as a Taylor series on the interval o9 j(Fy) so that

Fy(x) = Fy(azp) + Fyloyr) (@ — ajp) + F (&) (x — ar)/2.
where & is between x and «; p. Using the fact that |z — o r| < H!, we get
|Fy(x)| <« W(H)+ H '+ H-H>< H™! (28)

for any x € 09,(Fy) and n > 2. Furthermore, from the Mean Value Theorem, for
S 0'27j(F9) with o; F € O'(Fg),

[Fo(z)] < [Fylayr)l + [FY (&) (2 — ajr)| (29)
< HY: 4 HH Y F'(ajp)| " < HY

Consider the new function R = Fy — Fy = a,fi + a., fm, where both F' and F belong to
Fuby (H). For these functions, conditions (28) and (29) hold on the set o9 ;(Fy) [ 02,i(Fp)-
By (5), (28) and (29), we obtain

|R(z)| < H™', |R'(z)] < HY2.

From (6) it is relatively straightforward to show that |a}| < H'/? for i = [, m so that
H(R) < H'Y2. Therefore, |a}fi(x) + a’, fn(z)] < H(R)™2. Divide by fi(z) and put
t = to = fmf . Then, |a/ t(z) + aj| < H(R)~? which, by Khintchine’s Theorem,
holds infinitely often only on a set of measure zero. Finally, by Lemma 2, the set of
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points € I which satisfy |R(z)| < H~! for infinitely many (a},al,) also has zero
measure.

Case III. This is very similar to the previous case. For F' € F,(H) use o(Fy) to
denote the union of intervals I;(F, 8) for which H™" < |Fj(a;r)| <1 with0 < v < 1/4.
Hence o(Fp) is the set of € I which satisfy

|Fy(z)| < W(H),
and z lies in some [;(F,6) for which
H™ < |Fy(ajp)| < 1.
Fix the vector b; as above and define the following expansions of I;(F’ ):
03(Fp) = {x € I : dist(x,[;(F,0)) < c, H '|F'(ajp)| 7'}, ca > e(n),

oy (Fy) == {z € I : dist(x, [;(F,0)) < H "/},
From this,
p(o(F)) < cite(n)p(os(F)HE(H), (30)

where o3(Fy) = Ujos(Fp). It is clear that o3 ;(Fy) C o3 ;(Fp). Moreover, it is easy to
see that )
03,(Fo) C 03,(Fp) (31)

for any F € Fyp, (H) with os,(Fp) N os;(Fy) # 0.
Redefine essential and inessential intervals o ;(Fp). The interval os;(Fpy) will be
essential if for any F' € Fub, (H) other than F' € F, p, (H) we have 037J(F9)ﬂ03(159) = 0.
Summing the measures of the essential intervals o3(Fp) gives

2 S uloay(F) <1l (32)

FEF b, (H) ‘
03,;(Fp) essential

As #b; < H" 2, from (30) and (32), we have
Y S uetm < 3 E i <
H=1 by FEF,p, (H) H=1

By the Borel-Cantelli Lemma, the set of those x belonging to infinitely many essential
intervals has zero measure.

~ Now let 03;(Fp) be an inessential interval. Then, by definition and (31), there is a
F € F.p, (H) different from F' € F,,p,(H) such that

I;(F,0) C 03;(Fp) C (05 ;(Fy) N a5 ,(Fp)).
Using Taylor’s formula for F* on o3 ;(Fp), we obtain

|Fy(x)| <« H-1H8/3, (33)
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By the Mean Value Theorem, for any x € o3 ;(Fj)
|[Fp(@)] < [Fylogr)| + | (&) (@ — ajp)| < 1+ HHTWRE < HWP - (34)

Consider R(z) = Fy(x) — Fy(z) with F, F € Fpp,(H), and = € o3 i (Fp) ﬂogj(ﬁ’g). For
R the inequalities |R(z)| < H®/3>~! and |R'(z)| < H*/3 hold; these follow from (33)
and (34). As in Case II it is possible to show from (6) that |a}| < H*/3 (i =1,m) so
that H(R) = max{|a}], |a,,|} < H*/3. Again, let t = t,y = ff; ' By (5) and (33),

[R(@)| = laj,t(x) + a < H*P7 < H(R)®PDIE < H(R)™

for v < 1/4. By Khintchine’s theorem the last inequality holds infinitely often only for
a set of measure zero. Hence, by Lemma 2, the measure of o}(Fy) () o4(Fy) is zero and
the measure of the set of x which belong to infinitely many inessential domains is also
zero. The proof of the theorem is therefore complete. O
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AHHOTAIINS

B ganHOil crarbe JIOKA3LIBAETCS HEOJNHOPOIHBLIN aHaAJOr TeOopEeMbI
tuita I'porieBa B ciydae CXOAMMOCTH I HEBBIPOXKJIEHHDLIX KPHUBBLIX
B CeBKJIUJIOBOM IIPOCTPAHCTBE, KOIJa (DYHKIUS — AIIIPOKCHUMAIIAN
SIBJISIETCS HE 00si3aTe/IbHO MOHOTOHHOW. Harr pesyibrar ecrecTBEHHO
BKJIIOUaeT B cebd 1 0000IaeT TeopeMy JIId Mepbl MHOXKECTBa TOYEK
HEBBIPOXK/IEHHBIX KPHUBBIX B OJHOPOJHOM cCjydae. B joKa3are/ibCcTBe
UCIOJIL3YIOTCSA HEOMHOPOIHBIA METOJ[ IIepEeH0ca U METOJ] CyIIeCTBEHHBIX
U HeCyIleCTBeHHbIX objiacreii CupuHKyKa.

Kirouepnie cioBa: Heodnopodhvie 0uodharmosovr npubAuUMCeHUsA, MeoOPEMQ
XuHuuna, HEGBIPOIHCOCHHAA KPUBAL.



