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Inhomogeneous Diophantine approximation
on curves with non-monotonic error function

In this paper we prove a convergent part of inhomogeneous Groshev type
theorem for non–degenerate curves in Euclidean space where an error
function is not necessarily monotonic. Our result naturally incorporates and
generalizes the homogeneous measure theorem for non-degenerate curves.
In particular, the method of Inhomogeneous Transference Principle and
Sprindzuk’s method of essential and inessential domains are used in the
proof.
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Introduction and Statements
In 1998 Kleinbock and Margulis [10] established the Baker–Sprindzuk conjecture

concerning homogeneous Diophantine approximation on manifolds. An inhomogeneous
version was then proved by Beresnevich and Velani [6]. The theory of inhomogeneous
Diophantine approximation on manifolds was started with the result of V. I. Bernik,
D. Dickinson and M. Dodson [7]. The significantly stronger Groshev type theory for
dual Diophantine approximation on manifolds is established in [3], [4], and [8] for the
homogeneous case and in [2] for the inhomogeneous case. In all of these results the
error function Ψ was assumed to be monotonic. In 2005 Beresnevich [5] showed that
the condition that Ψ is monotonic could be removed for the Veronese curve Vn =
= {(x, x2, . . . , xn) : x ∈ R}; he conjectured that the result should also hold for any
non–degenerate curve in Euclidean space. This was proved in [9].

Our main result below is a convergent part of Groshev type theorem for inhomoge-
neous Diophantine approximation on non–degenerate curves in Euclidean space without
monotonicity condition. First some notation is needed. Let Fn be the set of functions

anfn(x) + . . .+ a1f1(x) + a0,

with n ≥ 2, a = (a0, . . . , an) ∈ Zn+1 \ {0}, and f1, f2, . . . , fn be C(n) functions from
R → R with non–vanishing Wronskian wr(f ′

1, . . . , f
′
n)(x) almost everywhere. For F ∈
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Fn define the height of F as H = H(F ) = max0≤j≤n |aj|. The Lebesgue measure of a
measurable set A ⊂ R is denoted by µ(A).

Define a real valued function Ψ : R+ → R+ and a function θ : R → R. Denote by
Ln,θ(Ψ) the set of x ∈ R such that the inequality

|F (x) + θ(x)| < Ψ(H(F )) (1)

has infinitely many solutions F ∈ Fn.
The main result of this paper is the following statement.

Theorem 1. Let n ≥ 2 and θ : R → R be a function such that θ ∈ C(n). Let
Ψ : R+ → R+ be an arbitrary function (not necessarily monotonic) such that the sum∑∞

h=1 h
n−1Ψ(h) converges. Then

µ(Ln,θ(Ψ)) = 0.

Throughout, the Vinogradov symbol ≪ is used so that if K and M are positive real
numbers then K ≪ M means that there exists C > 0 such that K ≤ CM . If K ≪ M
and M ≪ K we write K ≍M .

1. Proof of Theorem 1
First note that since

∑∞
h=1 h

n−1Ψ(h) converges, hn−1Ψ(h) tends to 0 as h → ∞.
Therefore,

Ψ(h) = o(h−n+1). (2)

The set S = {x ∈ R : wr(f ′
1, . . . , f

′
n)(x) = 0} is closed and of zero measure. Thus R\S is

open and therefore an Fσ set. We can write R\S = ∪∞
k=1[ak, bk]. It is therefore sufficient

to prove the theorem for a closed interval I. Also, since |wr(f ′
1, . . . , f

′
n)(x)| ≠ 0 almost

everywhere we will assume from now on, without loss of generality that

|wr(f ′
1, . . . , f

′
n)(x)| ≥ ε = ε(I) > 0 (3)

for all x in such an interval I. Since the functions f = (f1, . . . , fn) and θ are C(n) then
we can assume that there exists a constant K0 = K0(I, f , θ) such that

max
0≤i≤n

sup
x∈I

|f (i)(x)| ≤ K0 and max
0≤i≤n

sup
x∈I

|θ(i)(x)| ≤ K0. (4)

Let γ > 0 be a fixed real number. As γ → 0 the measure of the set of x ∈ I for
which the inequality |fs(x)| ≤ γ holds for at least for one s, 1 ≤ s ≤ n, also tends to
zero. Hence, from now on it is assumed that

|fi(x)| > γ, 1 ≤ i ≤ n. (5)

In what follows define the function tij as tij(x) = fi(x)f
−1
j (x). It is shown in Lemma 3

of [1] that if wr(f ′
1, . . . , f

′
n)(x) ̸= 0 almost everywhere then t′ij(x) ̸= 0 almost everywhere

for all i, j ∈ {1, . . . , n}. The next lemma relates the size of |wr(f ′
1, . . . , f

′
n)(x)| to the

size of |fi(x)f ′
j(x)− f ′

i(x)fj(x)|.
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Lemma 1. [9] If |wr(f ′
1, . . . , f

′
n)(x)| ≥ ε then |fi(x)f ′

j(x) − f ′
i(x)fj(x)| >

εγ2

2n+1n!Kn
0

for all i, j in {1, . . . , n}.

From now on, it is therefore assumed without loss of generality that

|fi(x)f ′
j(x)− f ′

i(x)fj(x)| ≥ δ2 =
εγ2

2n+1n!Kn
0

(6)

for all i, j ∈ {1, . . . , n} with i ̸= j.

Lemma 2. [9] Let I ⊂ R be an interval for which |wr(f ′
1, . . . , f

′
n)(x)| ≥ ε. Let

B1 ⊂ R be a set with µ(B1) = 0 and let B2 = {x ∈ I : tij(x) ∈ B1}, then B2 also has
zero measure.

For the proof of main result we will need some properties of the functions F ∈ Fn.
The following lemma is a modification and combination of Lemmas 2 and 3 of Pyartli,
[11]. We are assuming that (3) holds.

Lemma 3. Let F ∈ Fn. For any interval I1 ⊂ I with length |I1| ≤ l = l(ε(I), K0)
there exists i, 1 ≤ i ≤ n, such that

|F (i)(x)| > c(l)H(F ) (7)

for all x ∈ I1. The number of zeros of F ∈ Fn in I1 does not exceed n.

Using Lemma 3 and (4), we obtain that for F ∈ Fn and any interval I1 ⊂ I with
length |I1| ≤ l = l(ε(I), K0) there exists i, 1 ≤ i ≤ n, such that

|F (i)(x) + θ(i)(x)| > c0(l)H(F ) (8)

for all x ∈ I1 and sufficiently largeH(F ). Rolle’s theorem and (8) imply that the number
of sub–intervals in any interval I1 with |I1| ≤ l(ε(I), K0) where F + θ is monotonic is
at most n, where F ∈ Fn and H(F ) is sufficiently large.

Every interval I can be written as a finite union of intervals I1 with |I1| ≤ l.
Therefore, it is sufficient to prove the theorem for each of these smaller intervals. From
now on, we restrict ourselves to such an interval, relabelled I, which without loss of
generality satisifies (8).

The proof is now split into two parts and the following two sets are considered. Fix
a real number v satisfying

0 < v < 1/4. (9)

Define,

L1(n, θ) = {x ∈ I : |F (x)+θ(x)| < H(F )−n+1, |F ′(x)+θ′(x)| < H(F )−v i.m. F ∈ Fn}

and

L2(n, θ,Ψ) = {x ∈ I : |F (x)+θ(x)| < Ψ(H(F )), |F ′(x)+θ′(x)| ≥ H(F )−v i.m. F ∈ Fn}
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where i.m. should read for infinitely many. Clearly, from (2),

Ln,θ(Ψ) ⊂ L1(n, θ) ∪ L2(n, θ,Ψ).

It will be shown that each of the sets L1(n, θ) and L2(n, θ,Ψ) has Lebesgue measure
zero. Thus, to prove the theorem two different cases concerning the size of |F ′(x)+θ′(x)|
are considered. If x ∈ Ln,θ(Ψ) then x must satisfy at least one of these cases infinitely
often. To prove that each set of x satisfying one of the conditions infinitely often has
measure zero, repeated use will be made of the Borel–Cantelli Lemma below.

Lemma 4 (Borel–Cantelli). Let Aj be a family of Lebesgue measurable sets and let

A∞ be the set of points x ∈ R which lie in infinitely many Aj. If
∞∑
j=1

µ(Aj) < ∞ then

µ(A∞) = 0.

1.1. The case of small derivative

Proposition 1. Let n ≥ 2. Then, µ(L1(n, θ)) = 0.

Доказательство. First L1(n, θ) is written as a lim sup set. For F ∈ Fn define

B(F ) = {x ∈ I : |F (x) + θ(x)| < H(F )−n+1, |F ′(x) + θ′(x)| < H(F )−v}.

Then

L1(n, θ) =
∞∩

N=1

∞∪
t=N

∪
F∈Ft

n

B(F ),

where
F t

n := {F ∈ Fn, 2
t ≤ H(F ) < 2t+1}.

To prove the proposition it will be shown that a larger set (containing L1(n, θ)) has
measure zero and then the Inhomogeneous Transference Principle proved in [6] will
be used. The Inhomogeneous Transference Principle allows the transfer of zero measure
statements for homogeneous lim sup sets to inhomogeneous lim sup sets and is described
below.

Inhomogeneous Transference Principle. Most of this section is adapted from
[6, Case B]. For our purposes the two countable indexing sets T and A from [6] are the
sets T = N ∪ {0} and A = Fn. Throughout, J denotes a finite open interval in R with
closure denoted by J̄ . Let H and I be two maps from (N∪{0})×Fn ×R+ into the set
of open subsets of R such that

H(t, F, ϵ) = It
0(F, ϵ), I(t, F, ϵ) = It

θ(F, ϵ).

For the specific case considered in this article the sets It
0(F, ϵ) and It

θ(F, ϵ) are defined
as follows:

It
θ(F, ϵ) =

{
{x ∈ I : |F (x) + θ(x)| < 2t(−n+1)ϵ, |F ′(x) + θ′(x)| < 2−tvϵ} if F ∈ F t

n,
∅ else;
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and

It
0(F, ϵ) =

{
{x ∈ I : |F (x)| < 2t(−n+1)ϵ, |F ′(x)| < 2−tvϵ} if F ∈

∪t+1
s=0 F s

n

∅ else. (10)

Let δ ∈ R and define the function ϕδ(t) = 2δt. Also, define Φ = {ϕδ : 0 ≤ δ < v/2}.
For any ϕ ∈ Φ define

It
θ(ϕ) = ∪F∈FnIt

θ(F, ϕ(t)) = ∪F∈Ft
n
It
θ(F, ϕ(t))

and denote by ΛI(ϕ) the limsup set

ΛI(ϕ) =
∞∩

N=1

∞∪
t=N

It
θ(ϕ).

In order to use the inhomogeneous transference principle from [6] we also define the
homogeneous limsup set

ΛH(ϕ) =
∞∩

N=1

∞∪
t=N

It
0(ϕ).

where
It
0(ϕ) = ∪F∈FnIt

0(F, ϕ(t)) = ∪t+1
s=0 ∪F∈Fs

n
It
0(F, ϕ(t)).

Clearly, for any 0 ≤ δ < v/2 the inclusion

L1(n, θ) ⊂ ΛI(ϕδ)

holds. The use of the transference principle depends on the two following properties
being satisfied.

Intersection Property: Let Φ denote a set of functions ϕ : N ∪ {0} → R+. The
triple (H, I,Φ) is said to satisfy the intersection property if for any ϕ ∈ Φ there exists
ϕ∗ ∈ Φ such that for all but finitely many t ∈ N ∪ {0} and all distinct F, F̃ ∈ Fn

It
θ(F, ϕ(t)) ∩ It

θ(F̃ , ϕ(t)) ⊂ It
0(ϕ

∗). (11)

Contracting Property: Let {kt}t∈N be a sequence of positive numbers such that∑
t∈N∪{0}

kt <∞. (12)

The measure µ is said to be contracting with respect to (I,Φ) if for any ϕ ∈ Φ there
exists ϕ+ ∈ Φ such that for all but finitely many t and all F ∈ Fn there exists a
collection Ct,F of balls B centred in J̄ satisfying the following three conditions:

J̄ ∩ It
θ(F, ϕ(t)) ⊂

∪
B∈Ct,F

B, (13)

J̄
∩ ∪

B∈Ct,F

B ⊂ It
θ(F, ϕ

+(t)), (14)

µ(5B ∩ It
θ(F, ϕ(t))) ≤ ktµ(5B). (15)

We now state the theorem from [6].
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Theorem 2 (Inhomogeneous Transference Principle). Suppose that (H, I,Φ) satis-
fies the intersection property and that µ is contracting with respect to (I,Φ). If, for all
ϕ ∈ Φ, µ(ΛH(ϕ)) = 0 then for all ϕ ∈ Φ, µ(ΛI(ϕ)) = 0.

First the contracting and intersection properties are verified and then it will be
shown that µ(ΛH(ϕδ)) = 0. This will imply using the transference principle that ΛI(ϕδ)
has measure zero and further that µ(L1(n, d)) = 0 as required.

1.1.1. Verifying the intersection property

Let t ∈ N ∪ {0} and F, F̃ ∈ Fn with F ̸= F̃ . Suppose that

x ∈ It
θ(F, ϕδ(t)) ∩ It

θ(F̃ , ϕδ(t)).

Then, the inequalities

|F (x) + θ(x)| < ϕδ(t)2
t(−n+1) and |F̃ (x) + θ(x)| < ϕδ(t)2

t(−n+1),

|F ′(x) + θ′(x)| < ϕδ(t)2
−vt and |F̃ ′(x) + θ′(x)| < ϕδ(t)2

−vt

hold.
Let R(x) = (F (x) + θ(x))− (F̃ (x) + θ(x)). Then,

|R(x)| < 2ϕδ(t)2
t(−n+1) < ϕδ′(t)2

t(−n+1),

|R′(x)| < 21−vtϕδ(t) < 2−vtϕδ′(t),

for all t > 1
v/2−δ

and where ϕδ′ ∈ Φ. Clearly R cannot be constant for n ≥ 2 and t ≥ 2,
so R ∈ ∪t+1

s=0F s
n. Thus, x ∈ It

0(R, ϕδ′(t)) and (11) is satisfied with ϕ∗ = ϕδ′ .

1.1.2. Verifying the contracting property

The following definition from [10] will be used.

Definition 1. Let C and α be positive numbers and f : I → R be a function defined
on the open interval I ⊂ R. Then f is called (C,α)–good on I if, for any open interval
B ⊂ I and any ϵ > 0,

µ({x ∈ B : |f(x)| < ϵ sup
x∈B

|f(x)|}) ≤ Cϵαµ(B).

Several useful facts about (C, α)-good functions are listed below.

Lemma 5. [8, Lemma 3.1] Let I ⊂ R and C, α > 0 be given.
(i) If f is (C, α)-good on I then so is λf for any λ ∈ R.
(ii) If fi, i ∈ I0, are (C,α)-good on I then so is supi∈I0 |fi|.
(iii) If f is (C, α)-good on I and c1 ≤ |f(x)|

|g(x)| ≤ c2 for all x ∈ I, then g is (C(c2/c1)α, α)-
good on I.

(iv) If f is (C, α)-good on I then f is (C ′, α′)-good on I ′ for every C ′ ≥ C, α′ ≤ α
and I ′ ⊂ I.
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Lemma 6. [2, Corollary 3] Let U be an open subset of Rm, x0 ∈ U and let f =
(f1, . . . , fn) : U → Rn be n-nondegenerate at x0 for some n ≥ 2. Let θ ∈ C(n)(U). Then
there exists a neighborhood V ⊂ U of x0 and a positive constants C and H0 such that
for any a ∈ Rn satisfying |a| ≥ H0

(a) a0 + a · f + θ is (C, 1
nm

)-good on V for every a0 ∈ R, and
(b) |∇(a · f + θ)| is (C, 1

m(n−1)
)-good on V .

Here ∇ denotes the gradient operator. Note that in the case m = 1 the map f is
nondegenerate iff wr(f ′

1, . . . , f
′
n)(x) ̸= 0 almost everywhere.

Lemma 7. [2, Corollary 4] Let U,x0, f and θ be as in Lemma 6. Then for every
sufficiently small neighborhood V ⊂ U of x0, there exists H0 > 1 such that

inf
(a,a0)∈Rn+1

|a|≥H0

sup
x∈V

|a0 + a · f(x) + θ(x)| > 0.

Let J be a sufficiently small open interval such that 5J ⊂ I. By Lemma 5 and
Lemma 6, there exist positive numbers C and H0 such that for any t ∈ T and F ∈ A
satisfying H(F ) ≥ H0 both F + θ and F ′ + θ′ are (C, 1

n
)-good on 5J . Similarly, for any

t ∈ N ∪ {0} and F ∈ F t
n, using the properies of (C, 1

n
)-good functions from Lemma 5,

we have that the function Ft,F : I → R given by

Ft,F (x) := max
{
2t(n−1)2−vt|F (x) + θ(x)|, |F ′(x) + θ′(x)|

}
is also (C, 1

n
)–good on 5J . By definition, for F ∈ F t

n,

It
θ(F, ϕδ(t)) =

{
{x ∈ I : Ft,F (x) < ϕδ(t)2

−vt} if F ∈ F t
n

∅ else . (16)

Next, given ϕδ ∈ Φ let
ϕ+
δ := ϕ 1

2
(δ+ v

2
).

Clearly, ϕ+
δ ∈ Φ and ϕδ(t) ≤ ϕ+

δ (t) for all t ∈ N ∪ {0}; therefore,

It
θ(F, ϕδ(t)) ⊂ It

θ(F, ϕ
+
δ (t)). (17)

The collection Ct,F will consist of intervals B(x), each centred at a point x ∈ J ,
which satisfy conditions (12)–(15) for an appropriate sequence kt; they are constructed
in the following way. Let F ∈ Fn. If It

θ(F, ϕδ(t)) = ∅ then Ct,F = ∅. Now assume that
It
θ(F, ϕδ(t)) ̸= ∅. By the definition of Φ and (9), it follows that

It
θ(F, ϕ

+
δ (t)) ⊂ {x ∈ I : |F (x) + θ(x)| < 2−t(n− 7

6
)}.

Since F + θ is (C, 1
n
)-good on 5J for all sufficiently large H(F ) then by definition of

(C,α)-good function and Lemma 7 we have

µ(It
θ(F, ϕ

+
δ (t)) ∩ J) ≤ µ({x ∈ J : |F (x) + θ(x)| < 2−t(n− 7

6
)}) ≪ 2−t(1− 7

6n
)µ(J)

for sufficiently large t. Hence,
J ̸⊂ It

θ(F, ϕ
+
δ (t)) (18)
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for sufficiently large t and n ≥ 2.
By (17) and the fact that It

θ(F, ϕ
+
δ (t)) is open, for every x ∈ J̄ ∩ It

θ(F, ϕδ(t)) there
is an open interval B′(x) containing x such that

B′(x) ⊂ It
θ(F, ϕ

+
δ (t)).

Hence, by (18), and the fact that J is bounded, there exists a scaling factor τ ≥ 1 such
that the open interval B(x) := τB′(x) satisfies

J̄ ∩B(x) ⊂ It
θ(F, ϕ

+
δ (t)),

J̄ ∩ 5B(x) ̸⊂ It
θ(F, ϕ

+
δ (t)), (19)

5B(x) ⊂ 5J.

Let
Ct,F := {B(x) : x ∈ J̄ ∩ It

θ(F, ϕδ(t))}.

By (19) and the construction, (13) and (14) are automatically satisfied. Consider any
interval B ∈ Ct,F . By (16) and (19)

sup
x∈5B

Ft,F (x) ≥ sup
x∈J̄∩5B

Ft,F (x) ≥ ϕ+
δ (t)2

−vt. (20)

On the other hand, by (16)

sup
x∈It

θ(F,ϕδ(t))∩5B
Ft,F (x) ≤ ϕδ(t)2

−vt. (21)

Let δ∗ = 1
4
(v − 2δ) > 0. Then, using (20), (21) and the definitions of ϕδ and ϕ+

δ , we
obtain

sup
x∈It

θ(F,ϕδ(t))∩5B
Ft,F (x) ≤ 2−δ∗t sup

x∈5B
Ft,F (x).

Since F ∈ F t
n then we have that H(F ) > H0 for all t ∈ T with t sufficiently large.

Since Ft,F is a (C, 1
n
)-good on 5J for sufficiently large t it follows from (19) and (21),

that

µ(It
θ(F, ϕδ(t)) ∩ 5B) ≤ µ({x ∈ 5B : Ft,F (x) ≤ 2−δ∗t sup

x∈5B
Ft,F (x)})

≤ 2−
δ∗t
n Cµ(5B)

(22)

for sufficiently large t. This verifies (15) with kt := 2−
δ∗t
n C and it is easily seen that the

convergence condition (12) is fulfilled.

1.1.3. Establishing µ(ΛH(ϕδ)) = 0 for δ ∈ [0, v/2)

For this Theorem 1.4 of [8] is used. In the notation of that paper take d = 1, U = R
and T1 = . . . = Tn = T , to obtain the next result.
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Theorem 3. [8] Let x0 ∈ I and f : I → Rn be n-nondegenerate at x0. There exists
an interval J ⊂ I containing x0 such that for any interval B ⊂ J there exists a constant
E > 0 such that for any choice of real numbers ω,K, T satisfying the inequalities

0 < ω ≤ 1, T ≥ 1, K > 0, ωKT n−1 ≤ 1

the set

S(ω,K, T ) :=

x ∈ B : there exists F ∈ Fn such that
|F (x)| < ω,
|F ′(x)| < K,
0 < H(F ) < T


has measure at most Eϵ

1
2n−1µ(B), where

ϵ := max
(
ω,

(
ωKT n−1

) 1
n+1

)
.

Fix δ ∈ [0, v/2). It then follows from (10) that

It
0(ϕδ) = ∪t+1

s=0 ∪F∈Fs
n
It
0(P, ϕδ(t)) = S(ω,K, T )

with ω = ϕδ(t)2
t(−n+1), K = ϕδ(t)2

−vt and T = 2t+2. By (9), we have ϵ≪ 2−
4δ∗t
n+1 . Thus,

Theorem 3 implies that
µ(It

0(ϕδ)) ≪ 2−βt,

where β := 4δ∗

(n+1)(2n−1)
is a positive constant. This finally gives that

∑
t∈N

µ(It
0(ϕδ)) ≪

∞∑
t=0

2−βt <∞.

Therefore, by the Borel-Cantelli lemma µ(ΛH(ϕδ)) = 0 for all δ ∈ [0, v
2
). By the

inhomogeneous transference principle this further implies that µ(ΛI(ϕδ)) = 0 as required.
The proposition has now been proved.

1.2. The case of big derivative

Proposition 2. Let n ≥ 2. Then, µ(L2(n, θ,Ψ)) = 0.

Доказательство. Let Fn(H) = {F ∈ Fn : H(F ) = H}, then Fn = ∪∞
H=1Fn(H).

Now consider F ∈ Fn(H) satisfying H−v ≤ |F ′(x) + θ′(x)|. For the remaining case
we need the following. The set of solutions of (1) in I consists of at most n intervals.
Each of these intervals can be further divided into subintervals on which F ′ + θ′ is
also monotonic (at most n − 1 of them). Each of these new intervals is finally further
subdivided into intervals with respect to the value of F ′(x) + θ′(x). Any interval on
which |F ′(x) + θ′(x)| < H−v has already been considered. For F ∈ Fn(H), let Ij(F, θ)
be one of the remaining intervals; thus, on Ij(F, θ), F + θ and F ′ + θ′ are monotonic
and |F (x) + θ(x)| < Ψ(H(F )), H−v ≤ |F ′(x) + θ′(x)| for all x ∈ Ij(F, θ). The number
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of Ij(F, θ) is clearly finite. Let Īj(F, θ) denote the closure of Ij(F, θ) and αj,F denote a
point in Īj(F, θ) such that

|F ′(αj,F ) + θ′(αj,F )| = min
x∈Īj(F )

|F ′(x) + θ′(x)|.

For convenience we will use Fθ to denote the function F (x) + θ(x).

Lemma 8. [11] Let a1, a2 > 0. Let ψ be an n-times continuously differentiable
function on (b1, b2) satisfying |ψ(n)(x)| ≥ a1 for all x ∈ (b1, b2). Then

µ({x ∈ (b1, b2) : ψ(x) < a2}) ≤ c(n)(a2/a1)
1/n.

From Lemma 8 we have

µ(Ij(F, θ)) ≤ c(n)Ψ(H)|F ′
θ(αj,F )|−1. (23)

It follows from the choice of αj,F that H−v ≤ |F ′
θ(αj,F )|.

Now we are ready to complete the proof of Theorem 1. The three remaining cases
in the proof concern different ranges for the size of F ′

θ(αj,F ).
Case I. For F ∈ Fn(H), let σ(Fθ) be the union of intervals Ij(F, θ) for which |F ′

θ(αj)| ≥
c1H

1/2. Hence, σ(Fθ) is the set of x ∈ I which satisfy |Fθ(x)| < Ψ(H) and x lies in some
interval Ij(F, θ) for which

|F ′
θ(αj,F )| ≥ c1H

1/2. (24)

For every F ∈ Fn(H) and every j, where αj,F ∈ σ(Fθ), and some constant c2 = c2(n)
define the set σ1,j(Fθ) of points x ∈ I which satisfy

|x− αj,F | < c2|F ′
θ(αj,F )|−1

for αj,F ∈ σ(Fθ). Let σ1(Fθ) = ∪jσ1,j(Fθ). From (23), for H > H0(c2), the inequality
σ(Fθ) ⊂ σ1(Fθ) holds and

µ(σ(Fθ)) ≤ c(n)c−1
2 Ψ(H)µ(σ1(Fθ)). (25)

For each j with αj,F ∈ σ(Fθ) develop F as a Taylor series on σ1,j(Fθ) so that

Fθ(x) = Fθ(αj,F ) + F ′
θ(αj,F )(x− αj,F ) + F ′′

θ (ξ1)(x− αj,F )
2/2,

where ξ1 is between x and αj,F . Estimate each term in the above equation to obtain

|Fθ(αj,F )| < Ψ(H) < c2,

|F ′
θ(αj,F )(x− αj,F )| < c2,

|F ′′
θ (αj,F )(x− αj,F )

2| < 2nK0H(c2|F ′
θ(αj,F )|−1)2 = 2nK0c

2
2c

−2
1 .

It is possible to choose c2 = c2(γ) < min{1/6, γ/10} such that 2nK0c2c
−2
1 < 1. Thus,

|Fθ(x)| < 3c2 for H > H0(c2).
Fix the vector b0 = (an, an−1, . . . , ak+1, H, ak−1, . . . , al+1, al−1, . . . , a1, a0), where ak =

H, k ̸= l, and let the subclass of Fn(H) of functions with the same vector b0 be denoted
by Fn,b0(H). The number of different Fn,b0(H) is ≪ Hn−1. Let F, F̃ ∈ Fn,b0(H), and
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assume that they have different coefficients al. Also, assume that σ1,j(Fθ)
∩
σ1,i(F̃θ) ̸= ∅,

for F, F̃ ∈ Fn,b0(H). Let l ≥ 1 and

R(x) = F̃θ(x)− Fθ(x) = al(F̃ )fl(x)− al(F )fl(x) = a′lfl(x),

where |a′lfl(x)| > γ. Here, al(F ) denotes the lth coordinate of F . Then,

γ < |R(x)| ≤ 6c2 < 3γ/5

which is a contradiction for c2 < γ/10. Similar argument in the case l = 0 gives a
contradiction for c2 < 1/6. Hence, σ1,j(Fθ)

∩
σ1,i(F̃θ) = ∅ and

∑
F∈Fn,b0

(H)

µ(σ1(Fθ)) ≪ |I|.

Together with (25) this gives ∑
F∈Fn,b0

(H)

µ(σ(Fθ)) ≪ |I|Ψ(H).

Summing this over all vectors b0 gives
∞∑

H=1

∑
b0

∑
F∈Fn,b0

(H)

µ(σ(Fθ)) ≪
∞∑

H=1

Hn−1Ψ(H)|I| <∞.

The Borel–Cantelli lemma can now be used to complete the proof.

Case II. This time, for F ∈ Fn(H) use σ(Fθ) to denote the union of intervals Ij(F, θ)
for which 1 ≤ |F ′(αj,F )| < c1H

1/2. Hence σ(Fθ) is the set of x ∈ I which satisfy

|Fθ(x)| < Ψ(H),

and x lies in some Ij(F, θ) for which

1 ≤ |F ′
θ(αj,F )| < c1H

1/2. (26)

Now define expansion of Ij(F, θ) as follows:

σ2,j(Fθ) := {x ∈ I : dist(x, Ij(F, θ)) < c3H
−1|F ′(αj,F )|−1}, c3 > c(n).

Let σ2(Fθ) = ∪jσ2,j(Fθ). It is readily verified that

µ(σ(Fθ)) ≤ c−1
3 c(n)HΨ(H)µ(σ2(Fθ)). (27)

Fix the vector

b1 = (an, an−1, . . . , ak+1, H, ak−1, . . . , al+1, al−1, . . . , am+1, am−1, . . . , a1, a0),

where ak = H with l,m ̸= k and l > m. Denote the subclass of Fn(H) of functions with
the same vector b1 by Fn,b1(H). The number of different sets Fn,b1(H) is ≪ Hn−2.

The intervals σ2,j(Fθ) will be divided into two classes of essential and inessential
intervals according to Sprindzuk’s method, see [12] for more details. The interval σ2,j(Fθ)
will be essential if

µ(σ2,j(Fθ) ∩ σ2(F̃θ)) ≤ µ(σ2,j(Fθ))/2
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for all F̃ ∈ Fn,b1(H) other than F ∈ Fn,b1(H). Otherwise it is called inessential.
First, the essential intervals are investigated. Summing the measure of essential

intervals gives ∑
F∈Fn,b1

(H)

∑
j

σ2,j(Fθ) essential

µ(σ2,j(Fθ)) ≪ |I|.

From this, (27) and the fact that the number of vectors b1 is ≪ Hn−2, we have∑
b1

∑
F∈Fn,b1

(H)

µ(σ(Fθ)) ≪ Hn−1Ψ(H)|I|.

Finally, we obtain
∞∑

H=1

∑
b1

∑
F∈Fn,b1

(H)

µ(σ(Fθ)) <∞.

Thus, by the Borel–Cantelli Lemma, the set of points x which belong to infinitely many
essential domains is of measure zero.

Now we consider the inessential intervals. Then, by definition, there is a F̃ ∈
Fn,b1(H) different from F ∈ Fn,b1(H) such that

µ(σ2,j(Fθ) ∩ σ2(F̃θ)) > µ(σ2,j(Fθ))/2.

Let x ∈ σ2,j(Fθ) ∩ σ2,i(F̃θ). Develop every function F ∈ Fn,b1(H) for every j, where
αj,F ∈ σ(Fθ), as a Taylor series on the interval σ2,j(Fθ) so that

Fθ(x) = Fθ(αj,F ) + F ′
θ(αj,F )(x− αj,F ) + F ′′

θ (ξ2)(x− αj,F )
2/2,

where ξ2 is between x and αj,F . Using the fact that |x− αj,F | ≪ H−1, we get

|Fθ(x)| ≪ Ψ(H) +H−1 +H ·H−2 ≪ H−1 (28)

for any x ∈ σ2,j(Fθ) and n ≥ 2. Furthermore, from the Mean Value Theorem, for
x ∈ σ2,j(Fθ) with αj,F ∈ σ(Fθ),

|F ′
θ(x)| ≤ |F ′

θ(αj,F )|+ |F ′′
θ (ξ3)(x− αj,F )| (29)

≪ H1/2 +HH−1|F ′(αj,F )|−1 ≪ H1/2.

Consider the new function R = F̃θ − Fθ = a′lfl + a′mfm, where both F and F̃ belong to
Fn,b1(H). For these functions, conditions (28) and (29) hold on the set σ2,j(Fθ)

∩
σ2,i(F̃θ).

By (5), (28) and (29), we obtain

|R(x)| ≪ H−1, |R′(x)| ≪ H1/2.

From (6) it is relatively straightforward to show that |a′i| ≪ H1/2 for i = l,m so that
H(R) ≪ H1/2. Therefore, |a′lfl(x) + a′mfm(x)| ≪ H(R)−2. Divide by fl(x) and put
t = tml = fmf

−1
l . Then, |a′mt(x) + a′l| ≪ H(R)−2 which, by Khintchine’s Theorem,

holds infinitely often only on a set of measure zero. Finally, by Lemma 2, the set of
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points x ∈ I which satisfy |R(x)| ≪ H−1 for infinitely many (a′l, a
′
m) also has zero

measure.
Case III. This is very similar to the previous case. For F ∈ Fn(H) use σ(Fθ) to

denote the union of intervals Ij(F, θ) for which H−v ≤ |F ′
θ(αj,F )| < 1 with 0 < v < 1/4.

Hence σ(Fθ) is the set of x ∈ I which satisfy

|Fθ(x)| < Ψ(H),

and x lies in some Ij(F, θ) for which

H−v ≤ |F ′
θ(αj,F )| < 1.

Fix the vector b1 as above and define the following expansions of Ij(F, θ):

σ3,j(Fθ) := {x ∈ I : dist(x, Ij(F, θ)) < c4H
−1|F ′(αj,F )|−1}, c4 > c(n),

σ′
3,j(Fθ) := {x ∈ I : dist(x, Ij(F, θ)) < H−1+4v/3}.

From this,
µ(σ(F )) ≤ c−1

4 c(n)µ(σ3(F ))HΨ(H), (30)

where σ3(Fθ) = ∪jσ3,j(Fθ). It is clear that σ3,j(Fθ) ⊂ σ′
3,j(Fθ). Moreover, it is easy to

see that
σ3,j(Fθ) ⊂ σ′

3,i(F̃θ) (31)

for any F̃ ∈ Fn,b1(H) with σ3,i(F̃θ) ∩ σ3,j(Fθ) ̸= ∅.
Redefine essential and inessential intervals σ3,j(Fθ). The interval σ3,j(Fθ) will be

essential if for any F̃ ∈ Fn,b1(H) other than F ∈ Fn,b1(H) we have σ3,j(Fθ)∩σ3(F̃θ) = ∅.
Summing the measures of the essential intervals σ3(Fθ) gives∑

F∈Fn,b1
(H)

∑
j

σ3,j(Fθ) essential

µ(σ3,j(Fθ)) ≪ |I|. (32)

As #b1 ≪ Hn−2, from (30) and (32), we have

∞∑
H=1

∑
b1

∑
F∈Fn,b1

(H)

µ(σ(Fθ)) ≪
∞∑

H=1

Hn−1Ψ(H)|I| <∞.

By the Borel–Cantelli Lemma, the set of those x belonging to infinitely many essential
intervals has zero measure.

Now let σ3,j(Fθ) be an inessential interval. Then, by definition and (31), there is a
F̃ ∈ Fn,b1(H) different from F ∈ Fn,b1(H) such that

Ij(F, θ) ⊂ σ3,j(Fθ) ⊂ (σ′
3,j(Fθ) ∩ σ′

3,i(F̃θ)).

Using Taylor’s formula for F on σ′
3,j(Fθ), we obtain

|Fθ(x)| ≪ H−1+8v/3. (33)
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By the Mean Value Theorem, for any x ∈ σ′
3,j(Fθ)

|F ′
θ(x)| ≤ |F ′

θ(αj,F )|+ |F ′′
θ (ξ5)(x− αj,F )| ≪ 1 +HH−1+4v/3 ≪ H4v/3. (34)

Consider R(x) = F̃θ(x)− Fθ(x) with F, F̃ ∈ Fn,b1(H), and x ∈ σ′
3,j(Fθ)

∩
σ′
3,i(F̃θ). For

R the inequalities |R(x)| ≪ H8v/3−1 and |R′(x)| ≪ H4v/3 hold; these follow from (33)
and (34). As in Case II it is possible to show from (6) that |a′i| ≪ H4v/3 (i = l,m) so
that H(R) = max{|a′l|, |a′m|} ≪ H4v/3. Again, let t = tml = fmf

−1
l . By (5) and (33),

|R(x)| = |a′mt(x) + a′l| ≪ H8v/3−1 ≪ H(R)(8v/3−1)/(4v/3) ≪ H(R)−1

for v < 1/4. By Khintchine’s theorem the last inequality holds infinitely often only for
a set of measure zero. Hence, by Lemma 2, the measure of σ′

3(Fθ)
∩
σ′
3(F̃θ) is zero and

the measure of the set of x which belong to infinitely many inessential domains is also
zero. The proof of the theorem is therefore complete.
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АННОТАЦИЯ

В данной статье доказывается неоднородный аналог теоремы
типа Грошева в случае сходимости для невырожденных кривых
в евклидовом пространстве, когда функция аппроксимации
является не обязательно монотонной. Наш результат естественно
включает в себя и обобщает теорему для меры множества точек
невырожденных кривых в однородном случае. В доказательстве
используются неоднородный метод переноса и метод существенных
и несущественных областей Спринджука.
Ключевые слова: неоднородные диофантовы приближения, теорема
Хинчина, невырожденная кривая.


