(C) Ilkhom M. Juraev ${ }^{1}$

Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra

Abstract

Let M be a type I finite von Neumann algebra and let $S(M)$ be the algebra of all measurable operators affiliated with M. We prove that every Lie derivation on $S(M)$ has standard form, that is, it is decomposed into the sum of a derivation and a center-valued trace.

Key words: von Neumann algebra, measurable operator, type I von Neumann algebra, derivation, inner derivation, Lie derivation, center-valued trace.

1. Introduction

The structure of Lie derivations on C^{*}-algebras, and on more general Banach algebras, has attracted some attention over the past years. Let A be an algebra over the field of complex numbers. A linear operator $D: A \rightarrow A$ is called a derivation if $D(x y)=D(x) y+x D(y)$ for all $x, y \in A$ (the Leibniz rule). Each element $a \in A$ defines a derivation D_{a} on A given by $D_{a}(x)=a x-x a, x \in A$. Such derivations D_{a} are said to be inner derivations. If the element a implementing the derivation D_{a} on A belongs to a larger algebra B containing A as a proper ideal, then D_{a} is called a spatial derivation. A linear operator $L: A \rightarrow A$ is called a Lie derivation if $L([x, y])=[L(x), y]+[x, L(y)]$ for all $x, y \in A$, where $[x, y]=x y-y x$.

Let $Z(A)$ denote the center of A. A linear operator $\tau: A \rightarrow Z(A)$ is called a center-valued trace if $\tau(x y)=\tau(y x)$ for all $x, y \in A$. The problem of the standard decomposition for a Lie derivation in ring theory was studied in work by W. S. Martindale [8]. W. S. Martindale solved this problem for primitive rings containing nontrivial idempotents and with the characteristic not equal to 2 . Following these results obtained for rings, C. R. Miers in [10] solved the problem of the standard decomposition for the case of von Neumann algebras. In [4], M. Brešar determinend the structure of Lie derivations of prime rings which does not satisfy the standard polynomial identity S_{4}. Banning and Mathieu [3] extended to semiprime rings the description of Lie derivations

[^0]obtained by Bresar in the prime case. V. E. Johnson proved in [7] that every continuous Lie derivation L from a C^{*}-algebra A into a Banach A-bimodule X can be decomposed as $L=D+\tau$, where $D: A \rightarrow X$ is a derivation and τ is a center-valued trace from A into the center of X. This result was obtained by cohomological methods, namely the concept of symmetric amenability, and in fact holds for symmetrically amenable Banach algebras [7, Theorem 9.2]. In [2], P. Ara and M. Mathieu developed a theory of local multipliers of C^{*}-algebras which one deal with the situation of C^{*}-algebras which are non commutative enough. A positive answer has also recently been given for Lie derivations from an arbitrary C^{*}-algebra into itself [9] by combining the techniques of [2] and [13]. The present paper is devoted to the standard decomposition of Lie derivations on the algebra of measurable operators affiliated with a type I_{n} von Neumann algebra.

The present paper is devoted to the standard decomposition of Lie derivations on the algebra of measurable operators affiliated with a type I_{n} von Neumann algebra, and is a somewhat extended English version of [14].

2. Preliminaries

Throughout the paper, let H denote a Hilbert space, and let $B(H)$ be the algebra of all bounded linear operators acting on H. Let M denote a von Neumann subalgebra in $B(H)$, and let $P(M)$ be the complete lattice of all orthogonal projections in M.

A linear subspace \mathcal{D} of H is said to be affiliated with $M($ written $\mathcal{D} \eta M)$ if $u(\mathcal{D}) \subseteq \mathcal{D}$ for any unitary operator u belonging to the commutant

$$
M^{\prime}:=\{y \in B(H): x y=y x \text { for all } x \in M\}
$$

of the algebra M.
A linear operator x in H with domain $\mathcal{D}(x)$ is said to be affiliated with M (written $x \eta M)$ if for each unitary operator $u \in M^{\prime}, u(\mathcal{D}(x)) \subseteq \mathcal{D}(x)$ and $u x(\xi)=x u(\xi)$ for all $\xi \in \mathcal{D}(x)$.

A linear subspace \mathcal{D} of H is said to be strongly dense in H with respect to the von Neumann algebra M if $\mathcal{D} \eta M$ and if there exists a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ of projections in $P(M)$ such that $p_{n} \uparrow \mathbf{1}, p_{n}(H) \subset \mathcal{D}$ for each $n \in \mathbb{N}$, and $p_{n}^{\perp}=\mathbf{1}-p_{n}$ is a finite projection in M for each $n \in \mathbb{N}$; here, as subsequently, $\mathbf{1}$ stands for the unit of M.

A closed linear operator x acting in H is said to be measurable with respect to the von Neumann algebra M if $x \eta M$ and if $\mathcal{D}(x)$ is strongly dense in H. Throughout let $S(M)$ be the set of all measurable operators affiliated with M (see [12]) and let $Z(S(M))$ be the center of the algebra $S(M)$. A von Neumann algebra M is of type I if it contains a faithful abelian projection.

3. Structure of Lie Derivations

Let M be a homogeneous von Neumann algebra of type $\mathrm{I}_{n}(n \in \mathbb{N})$, with the center Z. Then M is $*$-isomorphic to the algebra $M_{n}(Z)$ of $n \times n$ matrices over Z (see [11, Theorem 2.3.3]). In addition, $S(M) \cong M_{n}(Z(S(M)))$ and $Z(S(M))=S(Z)$ (see [1]) as
$S(Z) \cong L^{0}(\Omega)$ (see [12]), where $L^{0}(\Omega)=: L^{0}$ is the algebra of all complex measurable functions on Ω, and $S(Z)$ is the algebra of measurable operators for the commutative von Neumann algebra Z. Moreover, any element $x \in M_{n}(S(Z))$ can be represented in the form $x=\sum_{i, j=1}^{n} \lambda_{i j} e_{i j}$, where $\lambda_{i j} \in L^{0}$ and $e_{i j}$ are the matrix units. Let $L: S(M) \rightarrow S(M)$ be any Lie derivation, and let $\psi=\left.L\right|_{L^{0}}$ be the restriction of L to the center of L^{0}. This definition is correct because L maps the center into itself. Indeed, since, by definition, $L([z, x])=[L(z), x]+[z, L(x)]$ for all $z \in L^{0}$ and all $x \in S(M)$, and since $[z, L(x)]=0$ and $L([z, x])=0$, it follows that $[L(z), x]=0$, i.e. $L(z)$ belongs to the center whenever $z \in L^{0}$.

Define $\tau(x)=\sum_{i=1}^{n} \psi\left(\lambda_{i i}\right)$ provided $x=\sum_{i, j=1}^{n} \lambda_{i j} e_{i j}$.
Proposition. τ is a linear map, and $\tau(x y)=\tau(y x)$.
Proof. The linearity of L implies the linearity of τ. Let us prove that $\tau(x y)=\tau(y x)$. If we let

$$
\begin{gathered}
x=\left(\lambda_{i j}\right), \quad y=\left(\mu_{i j}\right), \quad x y=\left(c_{i j}\right), \quad c_{i i}=\sum_{k=1}^{n} \lambda_{i k} \mu_{k i}, \\
y x=\left(b_{i j}\right), \quad b_{i i}=\sum_{k=1}^{n} \mu_{i k} \lambda_{k i}, \quad i, j=\overline{1, n},
\end{gathered}
$$

then

$$
\tau(x y)=\sum_{k=1}^{n} \psi\left(\lambda_{i k} \mu_{k i}\right)=\psi\left(\sum_{k=1}^{n} \lambda_{i k} \mu_{k i}\right)=\psi\left(\sum_{k=1}^{n} \mu_{i k} \lambda_{k i}\right)=\tau(y x) .
$$

Thus, $\tau: M_{n}\left(L^{0}\right) \rightarrow L^{0}$ is a center-valued trace.
In order to prove the desired equality $L=D+\tau$, we shall show that $(L-\tau)=D$ is a derivation.
If $p_{1}=p$ is a projection in $S(M), \quad p_{2}=\mathbf{1}-p$ then set $p_{i} S(M) p_{j}=\left\{p_{i} x p_{j}: x \in S(M)\right\}$ for $i, j=1,2$. It is clear that $S(M)=\sum_{i=1}^{2} \sum_{j=1}^{2} p_{i} S(M) p_{j}$. Let further $M_{i j}=p_{i} S(M) p_{j}$ where $i, j=1,2$, and recall that $M_{i j} \subset M_{i k} M_{k j}$ for $i, j=1,2$.
Lemma 1. Let p be a projection in $S(M)$. Then, for all $x \in S(M)$,

$$
\begin{align*}
x\{p L(p)+L(p) p+p L(p) p-L(p)\} & -\{p L(p)+L(p) p+p L(p) p-L(p)\} x \\
& =3 p x\{p L(p)+L(p) p-L(p)\}-3\{p L(p)+L(p) p-L(p)\} x p . \tag{1}
\end{align*}
$$

Proof. The equality

$$
\begin{equation*}
[[[x, p], p], p]=[x, p] \tag{2}
\end{equation*}
$$

holds for any $x \in S(M)$. Applying L to the identity (2), we obtain

$$
L[[[x, p], p], p]=L[x, p],
$$

$$
\begin{gathered}
{[L([[x, p], p]), p]+[[[x, p], p], L(p)]=[[L([x, p]), p]+[[x, p], L(p)], p]+[[[x, p], p], L(p)]} \\
=[[[L(x), p]+[x, L(p)], p]+[[x, p], L(p)], p]+[[[x, p], p], L(p)] \\
=[[L(x) p-p L(x)+x L(p)-L(p) x, p]+[x p-p x, L(p)], p]+[[x p-p x, p], L(p)] \\
=[L(x) p-p L(x) p+x L(p) p-L(p) x p-p L(x) p+p L(x)-p x L(p)+p L(p) x \\
+x p L(p)-p x L(p)-L(p) x p+L(p) p x, p]+[x p-2 p x p+p x, L(p)] \\
=L(x) p-p L(x) p+x L(p) p-L(p) x p-p L(x) p+p L(x) p \\
-p x L(p) p+p L(p) x p+x p L(p) p-p x L(p) p-L(p) x p+L(p) p x p-p L(x) p \\
+p L(x) p-p x L(p) p+p L(p) x p+p L(x) p-p L(x)+p x L(p)-p L(p) x \\
-p x p L(p)+p x L(p)+p L(p) x p-p L(p) p x+x p L(p)-2 p x p L(p)+p x L(p) \\
\quad-L(p) x p+2 L(p) p x p-L(p) p x=L(x) p-p L(x)+x L(p)-L(p) x)
\end{gathered}
$$

which implies the required equality.
Lemma 2. $L(p)=[p, s]+z$ for some $s \in S(M)$ and $z \in Z(S(M))$.
Proof. Let $L(p)=\sum f_{i j}, f_{i j} \in M_{i j}(i, j=1,2)$. Applying (1) for all $x \in S(M)$, we obtain

$$
\begin{aligned}
& x\left\{p\left(f_{11}+f_{12}+f_{21}+f_{22}\right)+\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p+p\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p\right. \\
& \left.\quad-\left(f_{11}+f_{12}+f_{21}+f_{22}\right)\right\}-\left\{p\left(f_{11}+f_{12}+f_{21}+f_{22}\right)+\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p\right. \\
& \left.\quad+p\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p-\left(f_{11}+f_{12}+f_{21}+f_{22}\right)\right\} x \\
& =3 p x\left\{p\left(f_{11}+f_{12}+f_{21}+f_{22}\right)+\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p-\left(f_{11}+f_{12}+f_{21}+f_{22}\right)\right\} \\
& -3\left\{p\left(f_{11}+f_{12}+f_{21}+f_{22}\right)+\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p-\left(f_{11}+f_{12}+f_{21}+f_{22}\right)\right\} x p .
\end{aligned}
$$

Since $f_{i j} \in M_{i j}(i, j=1,2)$, it follows that $f_{i j}=p_{i} f_{i j} p_{j}$. Therefore

$$
\begin{array}{rlrl}
p f_{i j} & =p p_{i} f_{i j} p_{j}=f_{i j} \text { for } i=1, & & p f_{i j}=p p_{i} f_{i j} p_{j}=0 \text { for } i \neq 1, \\
f_{i j} p=p_{i} f_{i j} p_{j} p=f_{i j} \text { for } j=1, & & f_{i j} p=p_{i} f_{i j} p_{j} p=0 \text { for } j \neq 1, \\
p f_{i j} p=p p_{i} f_{i j} p_{j} p=f_{i j} \text { for } i=j=1, & & p f_{i j} p=p p_{i} f_{i j} p_{j} p=0 \text { for } i, j \neq 1 .
\end{array}
$$

Thus

$$
\begin{gathered}
p\left(f_{11}+f_{12}+f_{21}+f_{22}\right)=f_{11}+f_{12}, \\
\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p=f_{11}+f_{21}, \\
p\left(f_{11}+f_{12}+f_{21}+f_{22}\right) p=f_{11}, \\
x\left(f_{11}+f_{12}+f_{11}+f_{21}+f_{11}-f_{11}-f_{12}-f_{21}-f_{22}\right)-\left(f_{11}+f_{12}+f_{11}+f_{21}+f_{11}\right. \\
\left.-f_{11}-f_{12}-f_{21}-f_{22}\right) x=3 p x\left(f_{11}+f_{12}+f_{11}+f_{21}-f_{11}-f_{12}-f_{21}-f_{22}\right) \\
\\
\quad-3\left(f_{11}+f_{12}+f_{11}+f_{21}-f_{11}-f_{12}-f_{21}-f_{22}\right) x p .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
x\left(2 f_{11}-f_{22}\right)-\left(2 f_{11}-f_{22}\right) x=3 p x\left(f_{11}-f_{22}\right)-3\left(f_{11}-f_{22}\right) x p \tag{3}
\end{equation*}
$$

If $x \in M_{i m}$ and $y \in M_{k j}$, then $x y=0$ for $m \neq k$, and $x y \in M_{i j}$ for $m=k$.
If $x \in M_{12}$, then (3) implies $f_{11} x=x f_{22}$, whence it follows that

$$
\left(f_{11}+f_{22}\right) x=x\left(f_{11}+f_{22}\right) \quad\left(x \in M_{12}\right),
$$

because $f_{22} x=x f_{11}=0$. Similarly, $\left(f_{11}+f_{22}\right) x=x\left(f_{11}+f_{22}\right)\left(x \in M_{21}\right)$. Now let $x \in M_{11}$ and $y \in M_{12}$. Then

$$
\begin{aligned}
\left\{\left(f_{11}+f_{22}\right) x-x\left(f_{11}+f_{22}\right)\right\} y & =\left(f_{11}+f_{22}\right) x y-x\left(f_{11}+f_{22}\right) y \\
=\left(f_{11}+f_{22}\right) x y & -x y\left(f_{11}+f_{22}\right)=\left(f_{11}+f_{22}\right) x y-\left(f_{11}+f_{22}\right) x y=0
\end{aligned}
$$

because $y, x y \in M_{12}$. It follows that

$$
\left\{\left(f_{11}+f_{22}\right) x-x\left(f_{11}+f_{22}\right)\right\} y=0
$$

for all $y \in M_{12}$. From here, we obtain

$$
\left(f_{11}+f_{22}\right) x-x\left(f_{11}+f_{22}\right)=0 \quad\left(x \in M_{11}\right)
$$

Similarly,

$$
\left(f_{11}+f_{22}\right) x-x\left(f_{11}+f_{22}\right)=0 \quad\left(x \in M_{22}\right),
$$

i.e. $f_{11}+f_{22}=z \in Z(S(M))$. Hence, $L(p)=\left(f_{12}+f_{21}\right)+z$ and, setting $s=f_{12}-f_{21}$, we obtain $L(p)=(p s-s p)+z$.

Throughout the rest of this paper we impose the additional assumption that $L(p)$ is an element of $Z(S(M))$.
Lemma 3. $L\left(M_{i j}\right) \subset M_{i j}$ if $i \neq j$.
Proof. Let $x \in M_{12}$ and $L(x)=\sum y_{i j}$ where $y_{i j} \in M_{i j}$ for $i, j=1,2$. Then, taking into account the equality $x=[p, x]$, we obtain

$$
\sum y_{i j}=L(x)=L([p, x])=[L(p), x]+[p, L(x)]=[p, L(x)]=y_{12}-y_{21}
$$

since $L(p) \in Z(S(M))$. It follows that $y_{11}=y_{21}=y_{22}=0$. Thus, $L(x) \in M_{12}$. The case of $x \in M_{21}$ can be proved similarly.
Lemma 4. $D\left(M_{i i}\right) \subset M_{i i}$.
Proof. Let $x \in M_{11}$ and $L(x)=\sum y_{i j}, y_{i j} \in M_{i j}$. Then $[p, x]=0$ and $0=L([p, x])=$ $[L(p), x]+[p, L(x)]=y_{12}-y_{21}$, and so $y_{12}=y_{21}=0$ and $L(x) \in M_{11}+M_{22}$. Similarly, if $x \in M_{22}$, then $L(x) \in M_{11}+M_{22}$. Let $x \in M_{11}$ and $y \in M_{22}$, and let $L(x)=a_{11}+a_{22}$ and $L(y)=b_{11}+b_{22}$ where $a_{i i}, b_{i i} \in M_{i i}$. Then $0=L([x, y])=[L(x), y]+[x, L(y)]=$ $\left[a_{22}, y\right]+\left[x, b_{11}\right]=0$, where $\left[a_{22}, y\right] \in M_{22}$ and $\left[x, b_{11}\right] \in M_{11}$. Hence, in particular, $\left[a_{22}, y\right]=0$ for all $y \in M_{22}$, i.e. a_{22} is a central element in M_{22}, and so $a_{22}=(1-p) z$, $z \in S(Z)$. Therefore

$$
L(x)=a_{11}+(\mathbf{1}-p) z=\left[\left(a_{11}-p z\right)+z\right] \in M_{11}+S(Z),
$$

where $z \in S(Z)$.
On the other hand, $L=D+\tau$, and hence $L(x)=D(x)+z$ for some $z \in S(Z)$. Comparing the last equalities gives $D(x) \in M_{11}$ where $x \in M_{11}$. A similar argument holds if $x \in M_{22}$.

Now we prove that $L-\tau=D$ is a derivation on elements of $M_{i j}$.
Lemma 5. $D(x y)=D(x) y+x D(y)$ for $x \in M_{i i}$ and $y \in M_{j k}(j \neq k)$.
Proof. Let $x \in M_{11}$ and $y \in M_{12}$. Then $D(x y)=L(x y)-\tau(x y)=L(x y), \tau(x y)=$ $\tau(y x)=0$, since $y x=0$. Therefore $D(x y)=L[x, y]=[L(x), y]+[x, L(y)]=[(D+$ $\tau)(x), y]+[x,(D+\tau)(y)]=[D(x), y]+[x, D(y)]$, because $\tau(x), \tau(y)$ are central elements fulfilling $[\tau(x), y]=[x, \tau(y)]=0$. It follows that $D(x y)=D(x) y+x D(y)$, since $y D(x)=$ $D(y) x=0$. The case in which $x \in M_{22}$ and $y \in M_{21}$ can be proved similarly.

Lemma 6. $D(x y)=D(x) y+x D(y)$ for $x \in M_{i i}$ and $y \in M_{j j}$.
Proof. Let $x, y \in M_{11}, r \in M_{12}$, then by Lemma 5 we have

$$
\begin{gathered}
D((x y) r)=D(x y) r+x y D(r) . \\
D(x y) r=D(x y r)-x y D(r)=D(x) y r+x D(y r)-x y D(r) \\
=D(x) y r+x\{D(y) r+y D(r)\}-x y D(r)=\{D(x) y+x D(y)\} r .
\end{gathered}
$$

Hence, $\{D(x y)-D(x) y-x D(y)\} r=0$ for all $r \in M_{12}$. It follows that $D(x y)-D(x) y-$ $x D(y)=0$. The case when $x \in M_{22}$ and $y \in M_{22}$ can be proved similarly.

Theorem 1. D is a derivation from $S(M)$ into $S(M)$.
Proof. We have to prove that $D(x y)=D(x) y+x D(y)$ for all $x, y \in S(M)$. Let $x \neq$ $0 \in M_{12}, y \in M_{21}$. Then the equality

$$
\begin{aligned}
\tau([x, y])=L([x, y])-D([x, y])=[L(x), y] & +[x, L(y)]-D([x, y]) \\
& =[D(x), y]+[x, D(y)]-D(x y)+D(y x)
\end{aligned}
$$

implies $\{D(x) y+x D(y)-D(x y)\}+\{D(y x)-D(y) x-y D(x)\}=0$. Therefore $[D(x) y+$ $x D(y)-D(x y)] \in\left(M_{11} \cap M_{22}\right)$, i.e. $[D(x) y+x D(y)-D(x y)]=0$.

Corollary. If $\left.L\right|_{L^{0}}=0$, then any Lie derivation from $S(M)$ into $S(M)$ is a derivation.
Remark. We supposed in the proof of Lemma 3 that $L(p) \in S(Z)$. In reality, according to Lemma 2 one can write $L(p)=[p, s]+z$, where $p \in S(M), z \in S(Z)$. An element $s \in S(M)$ defines the inner derivation D_{s} by the rule: $D_{s}(x)=s x-x s$ for all $x \in S(M)$. Consider the Lie derivation $L^{\prime}=L-D_{s}$ from $S(M)$ into $S(M)$. It is clear that $L^{\prime}(p)=z \in S(Z)$. By Theorem $1, L^{\prime}=D+\tau$ or $L=\left(D+D_{s}\right)+\tau$.

Our standard decomposition result now follows from Theorem 1 and its Corollary, and we state it as the following main theorem.

Theorem 2. Let M be a homogeneous von Neumann algebra of type I_{n}. Any Lie derivation on $S(M)$ can be uniquely represented in the form

$$
L=D+\tau
$$

where D is a derivation and τ is a center-valued trace from $S(M)$ into $S(Z)$.

Another proof of Theorem 2, not essentially distinct from that given above, but different in form and detail, is offered in [14].

Let A be a commutative algebra, and let $M_{n}(A)$ be the algebra of $n \times n$ matrices over A. If $e_{i j}(i, j=\overline{1, n})$ are the matrix units in $M_{n}(A)$, then each element $x \in M_{n}(A)$ has form

$$
x=\sum_{i, j=1}^{n} \lambda_{i j} e_{i j}, \quad \text { where } \quad \lambda_{i j} \in A, \quad i, j=\overline{1, n} .
$$

Let $\delta: A \rightarrow A$ be a derivation. Setting

$$
\begin{equation*}
D_{\delta}\left(\sum_{i, j=1}^{n} \lambda_{i j} e_{i j}\right)=\sum_{i, j=1}^{n} \delta\left(\lambda_{i j}\right) e_{i j}, \tag{4}
\end{equation*}
$$

we obtain a well-defined linear operator D_{δ} on the algebra $M_{n}(A)$. Moreover, D_{δ} is a derivation on the algebra $M_{n}(A)$ and its restriction onto the center of the algebra $M_{n}(A)$ coincides with the given δ. Now Lemma 2.2 [1] implies the following.

Corollary. Let M be a homogeneous von Neumann algebra of type $I_{n}, n \in \mathbb{N}$. Every Lie derivation L on the algebra $S(M)$ can be uniquely represented as a sum $L=D_{a}+D_{\delta}+\tau$, where D_{a} is an inner derivation implemented by an element $a \in S(M)$, while D_{δ} is the derivation of the form (4) generated by a derivation δ on the center $S(M)$ identified with $S(Z)$.

Now let M be an arbitrary finite von Neumann algebra of type I with center Z. There exists a family $\left\{z_{n}\right\}_{n \in F}(F \subseteq \mathbb{N})$ of central projections from M with $\sup _{n \in F} z_{n}=\mathbf{1}$ such that the algebra M is $*$-isomorphic with the C^{*}-sum of von Neumann algebras $z_{n} M$ of type $\mathrm{I}_{n}(n \in F)$, i.e.

$$
M \cong \bigoplus_{n \in F} z_{n} M
$$

By Proposition 1.1 [1] we have that

$$
S(M) \cong \prod_{n \in F} S\left(z_{n} M\right)
$$

Suppose that D is a derivation on $S(M)$, and that δ is its restriction onto its center $S(Z)$. Since δ maps each $z_{n} S(Z) \cong Z\left(S\left(z_{n} M\right)\right)$ into itself, δ generates a derivation δ_{n} on $z_{n} S(Z)$ for each $n \in F$. Let $D_{\delta_{n}}$ be the derivation on the matrix algebra $M_{n}\left(z_{n} Z(S(M))\right) \cong S\left(z_{n} M\right)$ defined as in (4). Put

$$
\begin{equation*}
D_{\delta}\left(\left\{x_{n}\right\}_{n \in F}\right)=\left\{D_{\delta_{n}}\left(x_{n}\right)\right\}, \quad\left\{x_{n}\right\}_{n \in F} \in S(M) . \tag{5}
\end{equation*}
$$

Then the map D_{δ} is a derivation on $S(M)$. Now Lemma 2.3 [1] implies the following.
Corollary. Let M be a finite von Neumann algebra of type I. Every Lie derivation L on the algebra $S(M)$ can be uniquely represented as a sum $L=D_{a}+D_{\delta}+\tau$, where D_{a} is an inner derivation implemented by an element $a \in S(M)$, and D_{δ} is a derivation given as in (5).

References

[1] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, "Structure of derivations on various algebras of measurable operators for type I von Neumann algebras", J. Func. Anal., 256 (2009), 2917-2943.
[2] P. Ara, M. Mathieu, Local multipliers of C^{*}-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 2002.
[3] R. Banning, M. Mathieu, "Commutativity preserving mappings on semiprime rings", Comm. Algebra, 25 (1997), 247-265.
[4] M. Brešar, "Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings", Trans. Amer. Math. Soc., 335 (1993), 525-546.
[5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs, Oxford Press., Oxford., 2000.
[6] I. N. Herstein, "Lie and Jordan structures in simple, associative rings", Bull. Amer. Math. Soc., 67 (1961), 517-531.
[7] B.E. Johnson, "Symmetric amenability and the nonexistence of Lie and Jordan derivatuons", Math. Proc. Cambridge Philos. Soc., 120 (1996), 455-473.
[8] W. S. Martindale III, "Lie derivations of primitive rings.", Michigan Math. J., 11 (1964), 183-187.
[9] M. Mathieu, A. R. Villena, "The structure of Lie derivations on C^{*}-algebras", J. Func. Anal., 202 (2003), 504-525.
[10] C. R. Miers, "Lie derivations of von Neumann algebras", J. Duke Math., 40 (1973), 403409.
[11] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
[12] I. Segal, "A non-commutative extension of abstract integration", Ann. of Math., $\mathbf{5 7}$ (1953), 401-457.
[13] A. R. Villena, "Lie derivations on Banach algebras", J. Algebra, 226 (2000), 390-409.
[14] I. M. Zhuraev, "The structure of Lie derivations of unbounded operator algebras of type I. (Russian)", Uzbek. Mat. Zh., 1 (2011), 71-77.

Жураев И. М. Лиевы дифференцирования на алгебрах измеримых операторов, присоединенных к конечной алгебре фон Неймана. Дальневосточный математический журнал. 2013. Том 13. № 1. C. 43-51.

АННОТАЦИЯ

Для алгебр измеримых операторов, присоединенных к конечной алгебре фон Неймана типа I, доказана теорема о представлении лиевых дифференцирований в виде суммы ассоциативного дифференцирования и центрозначного следа.
Ключевые слова: алгебра фон Неймана, измеримый оператор, алгебра фон Неймана типа I, дифферениирование, лиево дифферениирование, внутреннее дифференцирование, центрозначный след.

[^0]: ${ }^{1}$ National University of Uzbekistan, Vuzgorodok str., Tashkent, 100174, Uzbekistan.
 E-mail: ijmo64@mail.ru

