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Lie derivations on the algebra
of measurable operators affiliated

with a type I finite von Neumann algebra

Let M be a type I finite von Neumann algebra and let S(M) be the algebra
of all measurable operators affiliated with M . We prove that every Lie
derivation on S(M) has standard form, that is, it is decomposed into the
sum of a derivation and a center-valued trace.
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1. Introduction

The structure of Lie derivations on C∗-algebras, and on more general Banach al-
gebras, has attracted some attention over the past years. Let A be an algebra over
the field of complex numbers. A linear operator D : A → A is called a derivation if
D(xy) = D(x)y+ xD(y) for all x, y ∈ A (the Leibniz rule). Each element a ∈ A defines
a derivation Da on A given by Da(x) = ax−xa, x ∈ A. Such derivations Da are said to
be inner derivations. If the element a implementing the derivation Da on A belongs to
a larger algebra B containing A as a proper ideal, then Da is called a spatial derivation.
A linear operator L : A→ A is called a Lie derivation if L ([x, y]) = [L(x), y]+ [x, L(y)]
for all x, y ∈ A, where [x, y] = xy − yx.

Let Z(A) denote the center of A. A linear operator τ : A → Z(A) is called a
center-valued trace if τ(xy) = τ(yx) for all x, y ∈ A. The problem of the standard
decomposition for a Lie derivation in ring theory was studied in work by W. S. Martindale
[8]. W. S. Martindale solved this problem for primitive rings containing nontrivial
idempotents and with the characteristic not equal to 2. Following these results obtained
for rings, C. R. Miers in [10] solved the problem of the standard decomposition for the
case of von Neumann algebras. In [4], M. Brešar determinend the structure of Lie
derivations of prime rings which does not satisfy the standard polynomial identity S4.
Banning and Mathieu [3] extended to semiprime rings the description of Lie derivations
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obtained by Bresar in the prime case. V. E. Johnson proved in [7] that every continuous
Lie derivation L from a C∗-algebra A into a Banach A-bimodule X can be decomposed
as L = D + τ, where D : A → X is a derivation and τ is a center-valued trace from
A into the center of X. This result was obtained by cohomological methods, namely
the concept of symmetric amenability, and in fact holds for symmetrically amenable
Banach algebras [7, Theorem 9.2]. In [2], P. Ara and M. Mathieu developed a theory of
local multipliers of C∗-algebras which one deal with the situation of C∗-algebras which
are non commutative enough. A positive answer has also recently been given for Lie
derivations from an arbitrary C∗-algebra into itself [9] by combining the techniques of [2]
and [13]. The present paper is devoted to the standard decomposition of Lie derivations
on the algebra of measurable operators affiliated with a type In von Neumann algebra.

The present paper is devoted to the standard decomposition of Lie derivations on
the algebra of measurable operators affiliated with a type In von Neumann algebra, and
is a somewhat extended English version of [14].

2. Preliminaries

Throughout the paper, let H denote a Hilbert space, and let B(H) be the algebra
of all bounded linear operators acting on H. Let M denote a von Neumann subalgebra
in B(H), and let P (M) be the complete lattice of all orthogonal projections in M.

A linear subspace D of H is said to be affiliated with M (written DηM) if u(D) ⊆ D
for any unitary operator u belonging to the commutant

M ′ := {y ∈ B(H) : xy = yx for all x ∈M}

of the algebra M.
A linear operator x in H with domain D(x) is said to be affiliated with M (written

xηM) if for each unitary operator u ∈ M ′, u (D (x)) ⊆ D(x) and ux(ξ) = xu(ξ) for all
ξ ∈ D(x).

A linear subspace D of H is said to be strongly dense in H with respect to the
von Neumann algebra M if DηM and if there exists a sequence {pn}∞n=1 of projections
in P (M) such that pn ↑ 1, pn(H) ⊂ D for each n ∈ N, and p⊥n = 1 − pn is a finite
projection in M for each n ∈ N; here, as subsequently, 1 stands for the unit of M.

A closed linear operator x acting in H is said to be measurable with respect to
the von Neumann algebra M if xηM and if D(x) is strongly dense in H. Throughout
let S(M) be the set of all measurable operators affiliated with M (see [12]) and let
Z(S(M)) be the center of the algebra S(M). A von Neumann algebra M is of type I if
it contains a faithful abelian projection.

3. Structure of Lie Derivations

Let M be a homogeneous von Neumann algebra of type In (n ∈ N), with the center
Z. Then M is ∗-isomorphic to the algebra Mn(Z) of n × n matrices over Z (see [11,
Theorem 2.3.3]). In addition, S(M) ∼= Mn(Z(S(M))) and Z(S(M)) = S(Z) (see [1]) as
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S(Z) ∼= L0(Ω) (see [12]), where L0(Ω) =: L0 is the algebra of all complex measurable
functions on Ω, and S(Z) is the algebra of measurable operators for the commutative von
Neumann algebra Z. Moreover, any element x ∈ Mn(S(Z)) can be represented in the

form x =
n∑

i,j=1

λijeij, where λij ∈ L0 and eij are the matrix units. Let L : S(M) → S(M)

be any Lie derivation, and let ψ = L|L0 be the restriction of L to the center of L0. This
definition is correct because L maps the center into itself. Indeed, since, by definition,
L ([z, x]) = [L(z), x] + [z, L(x)] for all z ∈ L0 and all x ∈ S(M), and since [z, L (x)] = 0
and L ([z, x]) = 0, it follows that [L (z) , x] = 0, i.e. L(z) belongs to the center whenever
z ∈ L0.

Define τ(x) =
n∑

i=1

ψ (λii) provided x =
n∑

i,j=1

λijeij.

Proposition. τ is a linear map, and τ(xy) = τ(yx).

Proof. The linearity of L implies the linearity of τ. Let us prove that τ(xy) = τ(yx). If
we let

x = (λij) , y = (µij) , xy = (cij) , cii =
n∑

k=1

λikµki,

yx = (bij) , bii =
n∑

k=1

µikλki, i, j = 1, n,

then

τ(xy) =
n∑

k=1

ψ (λikµki) = ψ

(
n∑

k=1

λikµki

)
= ψ

(
n∑

k=1

µikλki

)
= τ(yx).

Thus, τ :Mn (L
0) → L0 is a center-valued trace.

In order to prove the desired equality L = D + τ, we shall show that (L − τ) = D
is a derivation.
If p1 = p is a projection in S(M), p2 = 1−p then set piS(M)pj = {pixpj : x ∈ S(M)}

for i, j = 1, 2. It is clear that S(M) =
2∑

i=1

2∑
j=1

piS(M)pj. Let further Mij = piS(M)pj

where i, j = 1, 2, and recall that Mij ⊂MikMkj for i, j = 1, 2.

Lemma 1. Let p be a projection in S(M). Then, for all x ∈ S(M),

x {pL (p) + L (p) p+ pL (p) p− L (p)} − {pL (p) + L (p) p+ pL (p) p− L (p)}x
= 3px {pL (p) + L (p) p− L (p)} − 3 {pL (p) + L (p) p− L (p)}xp. (1)

Proof. The equality
[[[x, p] , p] , p] = [x, p] (2)

holds for any x ∈ S(M). Applying L to the identity (2), we obtain

L[[[x, p], p], p] = L[x, p],
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[L([[x, p], p]), p] + [[[x, p], p], L(p)] = [[L([x, p]), p] + [[x, p], L(p)], p] + [[[x, p], p], L(p)]

= [[[L(x), p] + [x, L(p)], p] + [[x, p], L(p)], p] + [[[x, p], p], L(p)]

= [[L(x)p− pL(x) + xL(p)− L(p)x, p] + [xp− px, L(p)], p] + [[xp− px, p], L(p)]

= [L(x)p− pL(x)p+ xL(p)p− L(p)xp− pL(x)p+ pL(x)− pxL(p) + pL(p)x

+ xpL(p)− pxL(p)− L(p)xp+ L(p)px, p] + [xp− 2pxp+ px, L(p)]

= L(x)p− pL(x)p+ xL(p)p− L(p)xp− pL(x)p+ pL(x)p

− pxL(p)p+ pL(p)xp+ xpL(p)p− pxL(p)p− L(p)xp+ L(p)pxp− pL(x)p

+ pL(x)p− pxL(p)p+ pL(p)xp+ pL(x)p− pL(x) + pxL(p)− pL(p)x

− pxpL(p) + pxL(p) + pL(p)xp− pL(p)px+ xpL(p)− 2pxpL(p) + pxL(p)

− L(p)xp+ 2L(p)pxp− L(p)px = L(x)p− pL(x) + xL(p)− L(p)x,

which implies the required equality.

Lemma 2. L(p) = [p, s] + z for some s ∈ S(M) and z ∈ Z(S(M)).

Proof. Let L(p) =
∑
fij, fij ∈ Mij (i, j = 1, 2). Applying (1) for all x ∈ S(M), we

obtain

x{p(f11 + f12 + f21 + f22) + (f11 + f12 + f21 + f22)p+ p(f11 + f12 + f21 + f22)p

− (f11 + f12 + f21 + f22)} − {p(f11 + f12 + f21 + f22) + (f11 + f12 + f21 + f22)p

+ p(f11 + f12 + f21 + f22)p− (f11 + f12 + f21 + f22)}x
= 3px{p(f11 + f12 + f21 + f22) + (f11 + f12 + f21 + f22)p− (f11 + f12 + f21 + f22)}
− 3{p(f11 + f12 + f21 + f22) + (f11 + f12 + f21 + f22)p− (f11 + f12 + f21 + f22)}xp.

Since fij ∈Mij (i, j = 1, 2), it follows that fij = pifijpj. Therefore

pfij = ppifijpj = fij for i = 1, pfij = ppifijpj = 0 for i ̸= 1,

fijp = pifijpjp = fij for j = 1, fijp = pifijpjp = 0 for j ̸= 1,

pfijp = ppifijpjp = fij for i = j = 1, pfijp = ppifijpjp = 0 for i, j ̸= 1.

Thus

p(f11 + f12 + f21 + f22) = f11 + f12,

(f11 + f12 + f21 + f22)p = f11 + f21,

p(f11 + f12 + f21 + f22)p = f11,

x(f11 + f12 + f11 + f21 + f11 − f11 − f12 − f21 − f22)− (f11 + f12 + f11 + f21 + f11

− f11 − f12 − f21 − f22)x = 3px(f11 + f12 + f11 + f21 − f11 − f12 − f21 − f22)

− 3(f11 + f12 + f11 + f21 − f11 − f12 − f21 − f22)xp.

Therefore

x(2f11 − f22)− (2f11 − f22)x = 3px(f11 − f22)− 3(f11 − f22)xp. (3)
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If x ∈Mim and y ∈Mkj, then xy = 0 for m ̸= k, and xy ∈Mij for m = k.
If x ∈M12, then (3) implies f11x = xf22, whence it follows that

(f11 + f22)x = x(f11 + f22) (x ∈M12),

because f22x = xf11 = 0. Similarly, (f11 + f22)x = x(f11 + f22) (x ∈ M21). Now let
x ∈M11 and y ∈M12. Then

{(f11 + f22)x− x(f11 + f22)} y = (f11 + f22)xy − x(f11 + f22)y

= (f11 + f22)xy − xy(f11 + f22) = (f11 + f22)xy − (f11 + f22)xy = 0,

because y, xy ∈M12. It follows that

{(f11 + f22)x− x(f11 + f22)} y = 0

for all y ∈M12. From here, we obtain

(f11 + f22)x− x(f11 + f22) = 0 (x ∈M11).

Similarly,
(f11 + f22)x− x(f11 + f22) = 0 (x ∈M22),

i.e. f11 + f22 = z ∈ Z(S(M)). Hence, L(p) = (f12 + f21) + z and, setting s = f12 − f21,
we obtain L(p) = (ps− sp) + z.

Throughout the rest of this paper we impose the additional assumption that L(p)
is an element of Z(S(M)).

Lemma 3. L (Mij) ⊂Mij if i ̸= j.

Proof. Let x ∈M12 and L(x) =
∑
yij where yij ∈Mij for i, j = 1, 2. Then, taking into

account the equality x = [p, x], we obtain∑
yij = L(x) = L([p, x]) = [L(p), x] + [p, L(x)] = [p, L(x)] = y12 − y21,

since L(p) ∈ Z(S(M)). It follows that y11 = y21 = y22 = 0. Thus, L(x) ∈M12. The case
of x ∈M21 can be proved similarly.

Lemma 4. D(Mii) ⊂Mii.

Proof. Let x ∈ M11 and L(x) =
∑
yij, yij ∈ Mij. Then [p, x] = 0 and 0 = L ([p, x]) =

[L(p), x] + [p, L(x)] = y12 − y21, and so y12 = y21 = 0 and L(x) ∈M11 +M22. Similarly,
if x ∈M22, then L(x) ∈M11 +M22. Let x ∈M11 and y ∈M22, and let L(x) = a11 + a22
and L(y) = b11 + b22 where aii, bii ∈ Mii. Then 0 = L([x, y]) = [L(x), y] + [x, L(y)] =
[a22, y] + [x, b11] = 0, where [a22, y] ∈ M22 and [x, b11] ∈ M11. Hence, in particular,
[a22, y] = 0 for all y ∈ M22, i.e. a22 is a central element in M22, and so a22 = (1 − p)z,
z ∈ S(Z). Therefore

L(x) = a11 + (1− p)z = [(a11 − pz) + z] ∈M11 + S(Z),

where z ∈ S(Z).
On the other hand, L = D + τ, and hence L(x) = D(x) + z for some z ∈ S(Z).

Comparing the last equalities gives D(x) ∈ M11 where x ∈ M11. A similar argument
holds if x ∈M22.
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Now we prove that L− τ = D is a derivation on elements of Mij.

Lemma 5. D(xy) = D(x)y + xD(y) for x ∈Mii and y ∈Mjk (j ̸= k).

Proof. Let x ∈ M11 and y ∈ M12. Then D(xy) = L(xy) − τ(xy) = L(xy), τ(xy) =
τ(yx) = 0, since yx = 0. Therefore D(xy) = L[x, y] = [L(x), y] + [x, L(y)] = [(D +
τ)(x), y]+ [x, (D+τ)(y)] = [D(x), y]+ [x,D(y)], because τ(x), τ(y) are central elements
fulfilling [τ(x), y] = [x, τ(y)] = 0. It follows that D(xy) = D(x)y+xD(y), since yD(x) =
D(y)x = 0. The case in which x ∈M22 and y ∈M21 can be proved similarly.

Lemma 6. D(xy) = D(x)y + xD(y) for x ∈Mii and y ∈Mjj.

Proof. Let x, y ∈M11, r ∈M12, then by Lemma 5 we have

D((xy)r) = D(xy)r + xyD(r).

D(xy)r = D(xyr)− xyD(r) = D(x)yr + xD(yr)− xyD(r)

= D(x)yr + x {D(y)r + yD(r)} − xyD(r) = {D(x)y + xD(y)} r.

Hence, {D(xy)−D(x)y − xD(y)} r = 0 for all r ∈M12. It follows thatD(xy)−D(x)y−
xD(y) = 0. The case when x ∈M22 and y ∈M22 can be proved similarly.

Theorem 1. D is a derivation from S(M) into S(M).

Proof. We have to prove that D(xy) = D(x)y + xD(y) for all x, y ∈ S(M). Let x ̸=
0 ∈M12, y ∈M21. Then the equality

τ([x, y]) = L([x, y])−D([x, y]) = [L(x), y] + [x, L(y)]−D([x, y])

= [D(x), y] + [x,D(y)]−D(xy) +D(yx)

implies {D(x)y+xD(y)−D(xy)}+{D(yx)−D(y)x−yD(x)} = 0. Therefore [D(x)y+
xD(y)−D(xy)] ∈ (M11 ∩M22) , i.e. [D(x)y + xD(y)−D(xy)] = 0.

Corollary. If L|L0 = 0, then any Lie derivation from S(M) into S(M) is a derivation.

Remark. We supposed in the proof of Lemma 3 that L(p) ∈ S(Z). In reality,
according to Lemma 2 one can write L(p) = [p, s] + z, where p ∈ S(M), z ∈ S(Z). An
element s ∈ S(M) defines the inner derivation Ds by the rule: Ds(x) = sx− xs for all
x ∈ S(M). Consider the Lie derivation L′ = L−Ds from S(M) into S(M). It is clear
that L′(p) = z ∈ S(Z). By Theorem 1, L′ = D + τ or L = (D +Ds) + τ.

Our standard decomposition result now follows from Theorem 1 and its Corollary,
and we state it as the following main theorem.

Theorem 2. Let M be a homogeneous von Neumann algebra of type In. Any Lie
derivation on S(M) can be uniquely represented in the form

L = D + τ,

where D is a derivation and τ is a center-valued trace from S(M) into S(Z).
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Another proof of Theorem 2, not essentially distinct from that given above, but
different in form and detail, is offered in [14].

Let A be a commutative algebra, and let Mn(A) be the algebra of n × n matrices
over A. If eij

(
i, j = 1, n

)
are the matrix units in Mn (A), then each element x ∈Mn (A)

has form

x =
n∑

i,j=1

λijeij, where λij ∈ A, i, j = 1, n.

Let δ : A→ A be a derivation. Setting

Dδ

( n∑
i,j=1

λijeij

)
=

n∑
i,j=1

δ(λij)eij, (4)

we obtain a well-defined linear operator Dδ on the algebra Mn (A). Moreover, Dδ is
a derivation on the algebra Mn (A) and its restriction onto the center of the algebra
Mn (A) coincides with the given δ. Now Lemma 2.2 [1] implies the following.

Corollary. Let M be a homogeneous von Neumann algebra of type In, n ∈ N. Every Lie
derivation L on the algebra S(M) can be uniquely represented as a sum L = Da+Dδ+τ,
where Da is an inner derivation implemented by an element a ∈ S(M), while Dδ is the
derivation of the form (4) generated by a derivation δ on the center S(M) identified
with S(Z).

Now letM be an arbitrary finite von Neumann algebra of type I with center Z. There
exists a family {zn}n∈F (F ⊆ N) of central projections from M with supn∈F zn = 1 such
that the algebra M is ∗-isomorphic with the C∗-sum of von Neumann algebras znM of
type In (n ∈ F ), i.e.

M ∼=
⊕
n∈F

znM.

By Proposition 1.1 [1] we have that

S(M) ∼=
∏
n∈F

S(znM).

Suppose that D is a derivation on S(M), and that δ is its restriction onto its center
S(Z). Since δ maps each znS(Z) ∼= Z(S(znM)) into itself, δ generates a derivation
δn on znS(Z) for each n ∈ F . Let Dδn be the derivation on the matrix algebra
Mn(znZ(S(M))) ∼= S(znM) defined as in (4). Put

Dδ({xn}n∈F ) = {Dδn(xn)}, {xn}n∈F ∈ S(M). (5)

Then the map Dδ is a derivation on S(M). Now Lemma 2.3 [1] implies the following.

Corollary. Let M be a finite von Neumann algebra of type I. Every Lie derivation L
on the algebra S(M) can be uniquely represented as a sum L = Da +Dδ + τ, where Da

is an inner derivation implemented by an element a ∈ S(M), and Dδ is a derivation
given as in (5).
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АННОТАЦИЯ

Для алгебр измеримых операторов, присоединенных к конечной
алгебре фон Неймана типа I, доказана теорема о представлении
лиевых дифференцирований в виде суммы ассоциативного
дифференцирования и центрозначного следа.
Ключевые слова: алгебра фон Неймана, измеримый
оператор, алгебра фон Неймана типа I, дифференцирование,
лиево дифференцирование, внутреннее дифференцирование,
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